Control of the spin Hall current in two dimensional electronic gas
T. O. Cheche and E. Barna

Citation: Applied Physics Letters 89, 042116 (2006); doi: 10.1063/1.2234742
View online: http://dx.doi.org/10.1063/1.2234742
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/89/4?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
The Nernst spin effect in a two-dimensional electron gas

Spin transport in a tubular two-dimensional electron gas with Rashba spin-orbit coupling

Spin-Hall effect in a finite two-dimensional electron gas sample with a central defect

Resonant spin polarization and Hall effects in a two-dimensional electron gas

Spin-Hall effect in a diffusive two-dimensional electron system with spin-orbit coupling under an in-plane magnetic field
Control of the spin Hall current in two dimensional electronic gas

T. O. Cheche
University of Bucharest, Faculty of Physics, Bucharest 077125, Romania and National Chiao Tung University, Department of Electrophysics, Hsinchu 300, Taiwan

E. Barna
University of Bucharest, Faculty of Physics, Bucharest 077125, Romania

(Received 16 April 2006; accepted 2 June 2006; published online 28 July 2006)

The intrinsic spin Hall conductivity is obtained for a two-dimensional electronic gas (2DEG) in the presence of strain, Rashba coupling, and an external in-plane applied magnetic field. The conduction electrons of [001] oriented quantum well are used to model the 2DEG. The spin current value is dependent on the stress applied in direction [111]. © 2006 American Institute of Physics.

For the electron Hamiltonian in the conduction band, we consider the following Hamiltonian:

\[H = \frac{\mathbf{p}^2}{2m_e} + V(z) + H_R + H_P + H_B, \]

where the first two terms describe the orbital motion of the electron confined in the \(z \) direction (perpendicular on the xy QW plane) by the \(V(z) \) potential. In Eq. (1) \(e \) is the elementary charge, \(m_e \) is the electron effective mass, \(\mathbf{p} = \mathbf{p} + e \mathbf{A} \), with \(\mathbf{p} = -i\hbar (\partial \mathbf{A}/\partial t, \partial \mathbf{A}/\partial y, \partial \mathbf{A}/\partial z) \) the canonical electron momentum, \(\mathbf{A} = a_0 (\mathbf{B} \sin \theta, -\cos \theta, 0) \) is the vector potential, \(\mathbf{B} \) is the amplitude of magnetic field, \(\theta \) is the angle between \(\mathbf{B} \) and \(x \), and \(x \) is the direction of the electric field. \(H_R = \hbar \mathbf{\alpha} \cdot \mathbf{\Omega}_R/2 \), with \(\mathbf{\Omega}_R = a_0 (\mathbf{p} \times \mathbf{n})/\hbar \), is the Rashba spin-orbit coupling, \(a_R \) is the Rashba coupling factor, \(\mathbf{n} \) is the unit vector of the \(z \) direction, and \(\sigma_i \), with \(i=x, y, z \), are Pauli matrices in the \(z \) representation. \(H_P = \hbar \mathbf{\alpha} \cdot \mathbf{\Omega}_P/2 \), with \(\mathbf{\Omega}_P = [a_0 (\varepsilon_{xy} P_x - e_{xz} P_z) + b_0 (P_x e_{yz} - e_{xz})]/\hbar \), is the bulk Pikus interaction (responsible for the strain effect) written for [001]-oriented QW, \(a \) and \(b \) are constants which determine the magnitude of the splitting, and \(e_{ij} \) is the \(ij \) component of the strain tensor. Strain applied in directions [001] and [111] does not yield a \(\sigma_z \) component of the strain Hamiltonian (an effective magnetic field in the \(z \) direction). On the other hand, strain applied in [011], [101], or [111] direction induces such a component. The strain Hamiltonian for [011] or [101] direction, even for the simpler case \(\mathbf{B} = 0 \), introduces an additional parameter, e.g., \(e_{xz} = b \varepsilon_{xy} - e_{yz}/2 \) for [011] direction of the applied stress (for this case the Hamiltonian reads \(H_B = -e_{xz} P_x \sigma_y - e_{yz} P_y \sigma_z \)). In the case of [111] direction of the applied stress the only one necessary strain-dependent parameter \(e_{xy} \) facilitates discussion and interpretation of possible experimental results too. This case of [111] direction of applied stress, where \(e_{xz} = e_{yz} = e_{xy} = e_{xz} \) (Ref. 14), is considered by this work. \(H_R = \beta_\perp \sigma_y + \beta_\parallel \sigma_z \) with \(\beta_\parallel = 2^{-1} \mu B \cos \theta, \beta_\parallel = 2^{-1} \mu B \sin \theta \) is the Zeeman term, \(g \) is the effective \(g \) factor, and \(\mu_B = e\hbar /(2m_0) \) is the Bohr magneton. For a less computational effort we consider a semiparabolic confinement potential shape in the \(z \) direction, namely, \(V(z) = m_0 \omega_z^2 z^2/2 \) for \(z \geq 0 \) and \(V(z) = \infty \) for \(z < 0 \); the Schrödinger equation for the orbital motion in the \(z \) direction yields wave functions of harmonic oscillator, confined by \(V(z) \), having a displaced origin of the \(z \) axis. Notice that momenta \(p_x \) and \(p_z \) are constants of the motion for \(H \) given
by Eq. (1), the effective Hamiltonian \(\tilde{H} \) is obtained by a quantum average over the wave function of the ground state of the orbital motion in the \(z \) direction \(\varphi(z) \) and of the free motion in the \(xy \) plane. The effective Hamiltonian reads

\[
\tilde{H} = \hbar^2 (k_x^2 + k_y^2)/2m_e + 3\hbar \omega_0/2 + \xi_x \sigma_x + \xi_y \sigma_y + \xi_z \sigma_z,
\]

where

\[
\xi_x = \gamma_1 - \alpha \mathbf{g}(1 + r_f) k_x, \quad \xi_y = \alpha \mathbf{g}(1 + r_f) k_y, \quad \xi_z = \alpha_{rf} [k_x -(1 + r_f) k_y] + (\gamma - \alpha \mathbf{g}(1 + r_f) k_z),
\]

\[
\gamma = \beta \mathbf{g}(1 + r_f) k_z - \alpha \mathbf{g}(1 + r_f) k_y, \quad \alpha = \mathbf{e} B \cos \theta, \quad \beta = \mathbf{e} B \sin \theta, \quad r_f = \alpha_{rf} k_x / 2, \quad \omega_0\sqrt{2} = \omega_{ef}/m_e.
\]

The electron spin precession around the momentum dependent effective magnetic field is a useful tool for a mental visualization of the spin Hall effect. In our discussion the effective magnetic field in the \(z \) direction changes the explicit form of Bloch equations (as proposed by Ref. 2) used to find the SHC. A supplementary tilt of the precession axes (absent in the case of strain applied in [001] or [110]) has an impact on the value of spin Hall current.

The present analysis of the spin Hall effect of electrons in QW structures is based on the Kubo formalism for a spatially homogenous electric field. Next, we provide an expression of the spin Hall conductivity for the Hamiltonian \(\tilde{H} \) in the narrow QW limit, \(\tau \rightarrow 0 \). The narrow QW limit case can capture the physics of the problem and the amount of algebra necessary to solve this case is moderate. The corresponding Hamiltonian, which models the present problem, reads

\[
\tilde{H} = \hbar^2 (k_x^2 + k_y^2)/2m_e + 3\hbar \omega_0/2 + [\beta \mathbf{g}(1 + r_f) k_x] \sigma_x + [\beta \mathbf{g}(1 + r_f) k_y] \sigma_y + \alpha \mathbf{g}(1 + r_f) k_z \sigma_z.
\]

For zero temperature and noninteracting conduction-band electrons the spin Hall conductivity is given by

\[
\sigma_{xy}^S(\omega) = \frac{e \hbar}{A} \sum_{\kappa, \mu, \nu = \mu'} \langle f_{\kappa, \mu, k} - f_{\mu', k} \rangle \times \frac{\text{Im}[\langle \mathbf{k}, \mu | \rho^S_\omega(t) | \mu', k \rangle \langle k, \mu | \varphi(\omega, \gamma) \rangle]}{[E_{\mu}(k) - E_{\mu'}(k)] E_{\mu}(k) - E_{\mu'}(k) - \hbar \omega - i \eta},
\]

where \(f_{\kappa, \mu, k} \) is the \(T=0 \) K Fermi distribution function for energy \(E_{\mu}(k) \) at wave vector \(\mathbf{k} \) in a dispersion surface labeled by \(\mu = \pm, \) and \(A \) the \(xy \) area. The velocity operators are given by \(\mathbf{v} = i \langle \mathbf{H} | \mathbf{r} \rangle / \hbar \), where \(\mathbf{r} \) is the position operator and \(\langle \cdot \rangle \) means a quantum average over \(\varphi(\omega) \). The spin current operator for the spin moment polarized along the \(z \) direction and flowing in the \(y \) direction when an electric field is applied in the \(x \) direction is given by the generally accepted expression \(j_{xy} = e \hbar^2 (\sigma_x \mathbf{v} \cdot \mathbf{v} + \sigma_y \mathbf{v} \cdot \mathbf{v}) \). The eigenvalues \(E_{\mu}(k) \) and eigenvectors \(|\mathbf{k}, \pm \rangle \) of Hamiltonian \(\tilde{H} \) are as follows:

\[
E_{ \pm}(k) = \frac{\hbar^2 k^2}{2m_e} + 3\hbar \omega_0/2 \pm \sqrt{\Lambda_1 + \Lambda_2},
\]

where

\[
\Lambda_1 = [\alpha \mathbf{g}(1 + r_f) k_x]^2 + [\alpha \mathbf{g}(1 + r_f) k_y]^2, \quad \Lambda_2 = [\alpha \mathbf{g}(1 + r_f) k_z]^2 + 4\alpha_{rf}^2 \mu m B^2 + \alpha \mathbf{g}(1 + r_f) \mu m B (k \cos \theta - k_1 \sin \theta) \neq 0,
\]

and

\[
\rho_{\pm} = \alpha \mathbf{g}(1 + r_f) (k_x \pm k_y) / \sqrt{\Lambda_1 + \Lambda_2}, \quad \sin \delta_\pm = \sqrt{\Lambda_1 + \Lambda_2} \alpha \mathbf{g}(1 + r_f) k_1 / \sqrt{\Lambda_1 + \Lambda_2} \rho_{\pm}.
\]

A general analytical expression of the spin Hall conductivity may be obtained in the framework of the above 2DEG model. The presence of stress in [111] direction makes the two surfaces \(E_{\mu}(k) \) crossing only for particular orientations of the magnetic field, namely, \(\theta = 3\pi/4 \) or \(\theta = -\pi/4 \) at \(k_0 = (k_0, 0, 0) \). These magnetic field orientations are obtained by imposing \(\Lambda_1(k_0) = \Lambda_2(k_0) = 0 \) in Eq. (4a). For the following discussion, we will consider this crossing surface case. With the translation of the origin defined by \(k = K + k_0 \), the crossing of the surfaces \(E_{\mu}(k) \) in the \(K \) frame by the Fermi energy \(E_F \) yields contours which are found with

\[
K_{+}^F = -\frac{A_F \pm \sqrt{A_F^2 - 4B_F}}{2},
\]

where

\[
A_F = \sqrt{2} k_0 (\cos \alpha + \sin \alpha) \pm 2 h^{-1} m_e \alpha g(1 + r_f) \sqrt{r_f^2 (1 + r_f)^2 (1 - \sin 2\alpha) \pm 4 B_F} \pm \sqrt{2} k_0 (\cos \alpha + \sin \alpha) \pm 2 h^{-1} m_e \alpha g(1 + r_f) \sqrt{r_f^2 (1 + r_f)^2 (1 - \sin 2\alpha) \pm 4 B_F}
\]

and \(\alpha \) is the polar angle in the \(K \) frame and \(k_0 = |k_0| = \mu m g B / (2h \alpha g(1 + r_f)) \). As \(K_{+}^F \) must be positive real, condition \(A_F^2 - 4B_F \geq 0 \) must be fulfilled. For the simplest case, \(B_F < 0 \), Eq. (5) gives the integral contour defined by \(K \in [\min K_{+}^F, \max K_{+}^F] \). The intrinsic dc SHC obtained with Eq. (3), within the limits, \(\eta \rightarrow 0 \), and then \(\omega \rightarrow 0 \) is

\[
\sigma_{xy}^S = e \hbar / 16 \pi^2 m_e \alpha g(1 + r_f) \left(\int_{0}^{2\pi} \frac{d\alpha}{2} \left(\int_{\min K_{+}^F}^{\max K_{+}^F} \frac{dK F \cos \alpha (k_0 + K \cos \alpha)}{K^2 - r_f^2 (1 - \sin 2\alpha) \pm 4} \right) \right)
\]

for the crossing surfaces case reads

\[
\sigma_{xy}^S = e \hbar / 16 \pi^2 m_e \alpha g(1 + r_f) \left(\int_{0}^{2\pi} \frac{d\alpha}{2} \left(\int_{\min K_{+}^F}^{\max K_{+}^F} \frac{dK F \cos \alpha (k_0 + K \cos \alpha)}{K^2 - r_f^2 (1 - \sin 2\alpha) \pm 4} \right) \right)
\]

where \(r_F = r_f (1 + r_f)^{-1} \). In the limits \(B \rightarrow 0 \) and \(r_f \rightarrow 0 \), the model Hamiltonian from Eq. (2) describes the 2DEG with \(K \)-linear Rashba coupling and parabolic dispersion, and the expression of intrinsic dc SHC from Ref. 15 is recovered.
changed by applying stress in direction [111]. Thus, the spin current ranges between 0, for $\sigma_{xy}^S=0$, and maximum value, for $\sigma_{xy}^S=e/8\pi$. From experimental point of view, an important conclusion is that by variation of r_f (induced by variation of stress) in the interval $[-1,0]$ the spin current is modified from zero to the maximum value in clean QW samples. On the other hand, for values of r_f out of the interval $[-1,0]$ the variation of the intrinsic dc SHC decreases with the applied stress. Consequently, the accuracy of controlling the spin Hall current also decreases with the applied stress. The model described by the Hamiltonian of Eq. (2) predicts [by an analytical integration of Eq. (7)] that $\sigma_{xy}^S(r_f \to \pm \infty) = e/(\sqrt{38}\pi)$.

Interesting is the fact that the anisotropy itself of the dispersion branches is not sufficient to induce a strain-dependent spin Hall current. In Ref. 20, for a similar model excepting stress presence, but considering scattering effect, increasing electron density (corresponding to increasing Fermi energy) yields a less pronounced variation of the dc SHC (intrinsic plus extrinsic component) with the in-plane magnetic field. This is not in contradiction with the independency of the intrinsic dc SHC of k-linear Hamiltonian without effective magnetic field in the z direction, when the Fermi energy level is situated above the crossing point.\(^{13,19}\)

The z component of the effective magnetic is necessary to obtain a strain-dependent value of intrinsic SHC. On the other hand, a remarkable analogy between the effect of strain on SHC of 2DEG and strain-induced spin relaxation of the electrons of conduction band for the bulk case may be observed: a stress applied in [001] direction has an effect on neither intrinsic dc SHC nor spin relaxation time (as calculated in Ref. 13), but the stress applied in direction [111] affects both quantities. As the two phenomena, the spin Hall effect and spin relaxation are considered for QW and bulk, respectively, this analogy does not hold for the directions [011], [101], and [110]. The three directions are equivalent for the bulk treatment of spin relaxation, but not for the QW case involved by our discussion on the spin Hall effect. Only directions [011] and [101] induce an effective magnetic field in the z direction and consequently can generate a strain-dependent intrinsic dc SHC.

In conclusion, for a 2DEG, in the presence of Rashba coupling and the absence of Dresselhaus coupling, we predict that the intrinsic dc SHC is dependent on both the in-plane magnetic field and applied stress. For [001] direction of QW generating the 2DEG, the intrinsic dc SHC changes between 0 and the universal constant, $\sigma_{xy}^S=e/8\pi$ as a function of the magnitude of stress applied in [111] direction, when the in-plane magnetic field is oriented at angles $\theta =3\pi/4$ and $-\pi/4$ from the dc electric field direction. Consequently, the magnitude of the intrinsic spin Hall current may be controlled by applying stress in direction [111].

The authors are grateful to M. C. Chang and A. G. Mal’shukov for numerous helpful discussions. This work is supported by the National Science Council of Taiwan under Contract No. NSC 0940033709.

\(^{17}\)\(\gamma_x = \beta_x\) and \(\gamma_y = \beta_y\) are good approximations if \(2\pi \xi \approx \xi_0^2 \approx g\mu_B\). The k-independent part in \(\xi_0\) vanishes for \(\theta = \pi/4\) and \(\pi/4\) orientation of magnetic field.
\(^{18}\)This condition is imposed by the fact that \(k_{\perp} = k_0\) must be real. One obtains \(k_{\perp} = k_0/\sqrt{2}\).