Low-temperature method for enhancing sputter-deposited Hf O 2 films with complete oxidization
Chih-Tsung Tsai, Ting-Chang Chang, Po-Tsun Liu, Po-Yu Yang, Yu-Chieh Kuo, Kon-Tsu Kin, Pei-Lin Chang, and Fon-Shan Huang

Citation: Applied Physics Letters 91, 012109 (2007); doi: 10.1063/1.2753762
View online: http://dx.doi.org/10.1063/1.2753762
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/91/1?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Effects of plasma immersion ion nitridation on dielectric properties of Hf O 2
Appl. Phys. Lett. 90, 122901 (2007); 10.1063/1.2715044

Intriguing conducting properties of Hf O x N y thin films prepared from the Hf [N (C 2 H 5) 2] 4

Interfacial chemical structure of Hf O 2 Si film fabricated by sputtering

Two-step behavior of initial oxidation at Hf O 2 Si interface

Characteristics of Hf x Si y O films grown on Si 0.8 Ge 0.2 layer by electron-beam evaporation
Low-temperature method for enhancing sputter-deposited HfO$_2$ films with complete oxidization

Chih-Tsung Tsai
Institute of Electronics Engineering, National Tsing Hua University, HsinChu 300, Taiwan, Republic of China

Ting-Chang Chang$^{a)}$
Department of Physics and Institute of Electro-Optical Engineering, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, 70 Lien-Hai Road, Kaohsiung 804, Taiwan, Republic of China

Po-Tsun Liu, Po-Yu Yang, and Yu-Chieh Kuo
Department of Photonics and Display Institute, National Chiao Tung University, 1001 Ta-Hsueh Rd., HsinChu 300, Taiwan, Republic of China

Kon-Tsu Kin and Pei-Lin Chang
Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu 300, Taiwan, Republic of China

Fon-Shan Huang
Institute of Electronics Engineering, National Tsing Hua University, HsinChu 300, Taiwan, Republic of China

(Received 1 May 2007; accepted 11 June 2007; published online 3 July 2007)

A low-temperature method, supercritical CO$_2$ fluid (SCF) technology, is proposed to improve the dielectric properties of ultrathin hafnium oxide (HfO$_2$) film at 150 °C without significant formation of parasitic oxide at the interface between HfO$_2$ and Si substrate. In this research, the HfO$_2$ films were deposited by dc sputter at room temperature and post-treated by SCF which is mixed with 5 vol % propyl alcohol and 5 vol % H$_2$O. From high-resolution transmission electron microscopy image, the interfacial oxide of SCF-treated HfO$_2$ film is only 5 Å thick. Additionally, the enhancements in the qualities of sputter-deposited HfO$_2$ film after SCF process are exhibited by x-ray photoelectron spectroscopy and capacitance-voltage (C-V) measurement. © 2007 American Institute of Physics [DOI: 10.1063/1.2753762]

In recent records, the high dielectric constant (high-k) materials, such as Al$_2$O$_3$, ZrO$_2$, and HfO$_2$, have been widely investigated and employed as gate dielectric of transistors. Due to the high-k materials hold thicker thickness than traditional gate dielectric, SiO$_2$, with similar capacitance, is effective for they avoid the significant direct tunneling current through the SiO$_2$. Moreover, the high-k materials are applicable to the blocking oxide layer of nonvolatile memory for expediting the program/erase rate. Many deposition methods have been used to prepare the high-k films. The sputter deposition is more favorable among all these methods because of the advantages of simple process, high purity, low cost, and fitting to low-temperature fabrication that corresponds with the production of thin-film transistors. The high-temperature annealing is generally applied to improve the properties of sputter-deposited high-k films. Nevertheless, the postannealing might cause the crystallization of HfO$_2$ film and the formation of parasitic oxide at the interface between HfO$_2$ and Si substrate. These phenomena will individually result in the unexpected leakage current via grain boundaries of HfO$_2$ film and the increase of equivalent oxide thickness. In this investigation, for avoiding these phenomena as previous described, the supercritical CO$_2$ (SCCO$_2$) fluid technology is proposed to terminate traps in HfO$_2$ film and enhance the performance of HfO$_2$ film at low temperature (150 °C). The supercritical fluid holds liquidlike property, giving them excellent capability to be a transporter. In addition, supercritical fluid has gaslike and high-pressure properties to efficiently diffuse into nanoscale structures without damage. Therefore, it is allowed for supercritical fluid to carry H$_2$O molecules into thin HfO$_2$ films at low temperature and passivating the traps by H$_2$O molecules.

The HfO$_2$ film layer was deposited on p-type (100) silicon wafers by reactive dc magnetron sputtering at room temperature under Ar/O$_2$ ambient, and the thicknesses of ultrathin HfO$_2$ films were measured to be about 8–10 nm by ellipsometer system. These wafers deposited with ultrathin HfO$_2$ films were split into three groups and treated by different methods for improving the properties of low-temperature deposited HfO$_2$ films. The first group, labeled as “baking-only treatment,” was baked only on a hot plate at 150 °C for 2 h. The second group, labeled as “H$_2$O vapor treatment,” was immersed into a pure H$_2$O vapor ambience at 150 °C for 2 h, in a pressure-proof stainless steel chamber. The third group, marked as “3000 psi SCCO$_2$ treatment,” was placed in a supercritical fluid system at 150 °C for 2 h, where it was injected with 3000 psi SCCO$_2$ fluid that was mixed with 5 vol % propyl alcohol and 5 vol % pure H$_2$O. The propyl alcohol acts as surfactant between nonpolar-SCCO$_2$ fluid and polar-H$_2$O molecules, such that the H$_2$O molecules are uniformly distributed in SCCO$_2$ fluid and delivered into the...
HfO2 film to passivate the traps. Afterward, the metal-insulator-semiconductor (MIS) capacitors were produced by thermally evaporating Al electrodes on the top surface of HfO2 films and the back side of silicon wafer. The physical structure and chemical functional bonding of these treated-HfO2 films were characterized by high-resolution transmission electron microscopy (HRTEM) and x-ray photoelectron spectroscopy (XPS). The electrical behaviors of HfO2 films were analyzed from C-V measurements.

The HRTEM images of HfO2 films with various post-treatments are shown in Fig. 1. For baking-treated and H2O vapor-treated HfO2 films, Figs. 1(a) and 1(b), there is only extremely thin oxide layer (<5 Å) between HfO2 and Si substrates. The oxide layer could be explained reasonably by the formation of native oxide during depositing HfO2. In Fig. 1(c), the slight increase of interfacial oxide is discovered after SCCO2 process. This implies that the SCCO2 fluid owns superior capability than H2O vapor to operatively transport H2O molecules into HfO2 film, even arriving the interface and causing oxidation by H2O molecules.11,12 Although the thicker oxide layer (~5 Å) formed during SCCO2 process, the parasitic oxide of SCCO2-treated HfO2 film remains evidently thinner than that of high-temperature annealing-treated HfO2 film.8 According to the prevention of parasitic oxide, the low-temperature treatment thereby is more suitable than the high-temperature process to enhance qualities of HfO2 films.

To elucidate the variation in chemical bonding during processing HfO2 films with different treatments, these treated-HfO2 films were detected by XPS. Figure 2 displays the spectra of O1s, and the energy state at about 530.3 eV is corresponding to Hf–O bonding.13 Higher intensities and stronger binding energy of Hf–O bonding are observed in H2O vapor-treated and SCCO2-treated HfO2 films, indicating that the H2O molecules indeed can operatively react with the Hf dangling bonds (or traps) and form the stronger Hf–O bonding. Additionally, the excellent improvement in Hf–O bonding is achieved with the SCCO2 treatment, presenting that the H2O molecules could be effectively diffused into HfO2 films by SCCO2 fluid, exactly as the tendency of HRTEM results.

The C-V measurement is a common technology to recognize the qualities of dielectric films. Figure 3 plots the C-V characteristics of HfO2 films, capacitor area of 5.43 ×10−3 cm2, measuring under 1 MHz with gate bias swing from negative voltage to positive voltage (forward) and immediately from positive voltage to negative voltage (reverse). The slope of C-V curve in transient region, i.e., from Cmax to Cmin is relative to the interface states.14 The worst slope of C-V curve, expressing a large number of interface states exist, is performed by baking-treated HfO2 film. With H2O vapor treatment, the slope of C-V curve is sharper, and the effective dielectric constant (with the effect of interfacial oxide layer) is enhanced to 24.8. These could be explained by the reduction of traps at interface and in HfO2 film. Furthermore, the optimum improvement is obtained after 3000 psi SCCO2 process, and it indicates that the SCCO2 process results in a good reduction of interface and bulk traps.

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 140.113.38.11 On: Thu, 01 May 2014 00:22:44
treatment possesses superior capability to passivate the traps, including both Hf dangling bonds and interface states.

Besides, in Fig. 3, the unfavorable shift of C–V curve under forward and reverse gate bias swing is observed in baking-treated and H2O vapor-treated HfO2 films, the shifting value of C–V curves (ΔV) is shown in the table of Fig. 3. This phenomenon is resulted from the existence of traps in HfO2 films, which behave as carrier-trapping centers. It evidently demonstrates that the baking-treated HfO2 film keeps numerous traps because of the extensive ΔV, and these traps almost disappear after 3000 psi SCCO2 treatment.

Another interesting event, form Fig. 3, is the movement of C–V curve after different treatments. Due to the workfunction difference between Al (~−4.3 V) and p-type Si substrate (~−4.9 V) is about ~0.6 V, the ideal position of transient region of C–V curve should occur near $V_{gs} = 0.6$ V. However, for baking-only treated HfO2 film, the larger negative gate bias is required to reach transient region of C–V curve, and this is caused by the existence of positive charges (originated from the dc sputtering process) in HfO2 film. After the 3000 psi SCCO2 treatment, the C–V curve apparently moved to right. To explain this result, basing on Ref. 16, a possible mechanism to extract these positive charges with SCCO2 fluid is proposed. As shown in Fig. 4, the polarized-H2O molecule is taken as a dipole which attracts the charge in HfO2 films. Afterward, the H2O molecule and charge are connected with propyl alcohol and carried away by CO2 molecule (or SCCO2). For H2O vapor-treated HfO2 film, the portions of charges may remain in HfO2 film due to the H2O vapor owns poorer transport capability to remove charges and lead to the less shift of C–V curve.

In conclusion, the SCCO2 fluid is developed as operative transporter to take the H2O molecules into sputter-deposited HfO2 films at 150 °C and terminate the traps in HfO2 films by the oxidation with H2O molecules. The apparent advancement of Hf–O bonding is verified experimentally, and only extremely thin parasitic oxide layer (~5 Å) appears between HfO2 and Si substrate. Additionally, the superior C-V characteristic is also obtained after the SCCO2 fluid process. These results evidence the improvements of SCCO2 treatment in dielectric properties, including the rise of effective dielectric constant, reduction of interface states, and passivation of traps in HfO2 film. Besides, the SCCO2 fluid technology perhaps is an effective method to remove the charges in dielectric films.

This work was performed at Industrial Technology Research Institute-Energy and Environment Research Laboratories and National Nano Device Laboratories, Taiwan, R.O.C. The authors would like to acknowledge the financial support of the MOE ATU Program No. 95W803, the National Science Council, Taiwan, R.O.C., under Contract Nos, NSC-95-2120-M-110-003, NSC 95-2221-E-009-254-MY2 and partially supported by MOEA Technology Development for Academia Project No. 94-EC-17-A-07-S1-046.