A method for fabricating a resistor for a resistance random access memory (RRAM) includes: (a) forming a first electrode over a substrate; (b) forming a variable resistance layer of zirconium oxide on the first electrode under a working temperature, which ranges from 175°C to 225°C; and (c) forming a second electrode of Ti on the variable resistance layer.

7 Claims, 3 Drawing Sheets
FIG. 1

OFF-state (HRS) ON-state (LRS)

DC Voltage Switching Cycle

Resistance (Ωhm)

0 10^5 10^6 10^7 10^8 10^9 10^10
FIG. 3
METHOD FOR FABRICATING A RESISTOR
FOR A RESISTANCE RANDOM ACCESS
MEMORY

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims priority of Taiwanese application

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to a method for fabricating a resistor
for a resistance random access memory (RRAM), more par-
ticularly to a method involving forming a variable resistance
layer of zirconium oxide on an electrode under a working
temperature ranging from 175°C to 225°C.

2. Description of the Related Art

Generally, a resistance random access memory (RAM)
circuit is composed of an array of 1T1R cross point memory
cells (as described in U.S. Pat. No. 7,208,372), each of which
has a transistor and a resistor, or composed of an array of
1DIR cross point memory cells, each of which has a diode
and a resistor.

The resistor has a tri-layer structure including a top elec-
trode, a bottom electrode, and an insulating layer sandwiched
between the top and bottom electrodes. Transition metal
oxides, such as NiO, CuO, ZrO,
Ta,

5
TiO,

HfO,

25
with a variable resistance are widely used as the insulating layer. The aforesaid transition metal oxides exhibit a property that the
resistance thereof can be switched between a high resistance
state (which can be referred as OFF-state) and a low resist-
ance state (which can be referred as ON-state) by applying a
set (a write action) or a reset (an erasing action) voltage to the
resistor. Several mechanisms of resistive switching between
ON-state and OFF-state for the resistors have been proposed
over the years (as described in U.S. Patent Application
Publication No. 2007/0269683). The high and low resistance
states of the insulating layer within the resistor can be used to
define as a two-state information (0, 1) stored in the RRAM
circuit, and can be read by applying a reading voltage to the
resistor.

A conventional method for fabricating a resistor for a resis-
tance random access memory (RRAM) (see IEEE ELECT-
RON DEVICE LETTERS, VOL. 28, NO. 5, PP. 368–368,
MAY 2007 by the inventors of the present application) includes
the following steps: (A) forming a SiO layer on a Si
subsubstrate; (B) forming a bottom electrode of a layer structure
of Pt/Ti on the SiO layer; (C) forming a ZrO insulator layer
having a layer thickness of 70 nm on the bottom electrode
under a working temperature of 250°C by using a radio-
frequency magnetron sputtering system (not shown); and (D)
forming a Ti layer, which serves as a top electrode on the ZrO
insulator layer, by using the radio-frequency magnetron sput-
ttering system.

Since the formation of the resistors comes after the forma-
tion of the transistors (or the diodes) during a process of
fabricating the resistance random access memory (RRAM)
circuit, the working temperature (250°C) when forming the
ZrO insulator layer is too high for the fabricated transistors
(or the diodes), and would cause defects in the transistors (or
the diodes). Furthermore, the life cycle of the resistor is also
needed to be enhanced, i.e., more in number of resistive
switching times between ON-state and OFF-state that the
resistor can endure.

SUMMARY OF THE INVENTION

Therefore, the object of the present invention is to provide
a method for fabricating a resistor for a resistance random
access memory (RRAM) that can overcome the aforesaid
drawbacks of the previous art.

According to this invention, it is provided a method for
fabricating a resistor for a resistance random access memory
(RRAM) that comprises: (a) forming a first electrode over a
substrate; (b) forming a variable resistance layer of zirconium
oxide on the first electrode under a working temperature,
which ranges from 175°C to 225°C; and (c) forming a second electrode of Ti on the variable resistance layer.

BRIEF DESCRIPTION OF THE DRAWINGS

Other features and advantages of the present invention will
become apparent in the following detailed description of the
preferred embodiment of this invention, with reference to the
accompanying drawings, in which:

FIG. 1 is a plot of resistance vs. DC voltage switching cycle
to illustrate the endurance test for a resistor of Example 2 (E2);

FIG. 2 is a plot of current vs. voltage to illustrate the stability of the DC voltage switching cycle for the resistor of
Example 2 (E2); and

FIG. 3 is a plot of resistance vs. dynamic pulse switching cycle to illustrate the write/erase cycling test for the resistor of
Example 2 (E2).

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

The preferred embodiment of a method for fabricating a
resistor for a resistance random access memory (RRAM)
according to the present invention includes: (a) forming a first
electrode over a substrate; (b) forming a variable resistance
layer of zirconium oxide on the first electrode under a working
temperature, which ranges from 175°C to 225°C; and
(c) forming a second electrode of Ti on the variable resistance
layer.

Preferably, formation of the variable resistance layer in
step (b) is performed by sputtering techniques, and formation of
the first and second electrodes in step (a) and (c) is
conducted through evaporation techniques.

Preferably, the first electrode has a Ti adhesion layer depos-
it on the substrate and a Pt electrode layer deposited on the
Ti layer.

The following examples and comparative examples are
provided to illustrate the merits of the preferred embodiment
of the invention, and should not be construed as limiting the
scope of the invention.

EXAMPLE 1

E1

The resistor of Example 1 (E1) was prepared by the fol-
lowing steps.

A Si substrate was subjected to wet oxidation so as to form a
200-nm-thick SiO layer. Then, the SiO layer formed on the
Si substrate was put into an electron beam evaporation
system with a working pressure of 2x10 Torr for depositing
a bottom electrode which includes a 20-mm-thin Ti adhesion
layer on the SiO layer and an 80-nm-thick Pt electrode layer
on the Ti layer. The assembly was subsequently placed into a
radio-frequency (r.f.) magnetron sputtering system with a
working pressure of 10 mTorr for depositing a variable resistance layer of 40-nm-thick ZrO$_2$ layer at a working temperature of 175° C. by applying an output power of 150 W to a ZrO$_2$ target in the sputtering system. A mixture of O$_2$ and Ar in a ratio of 6 to 12 was introduced into the sputtering system during the deposition of the variable resistance layer. Finally, the assembly was placed into the evaporation system for depositing a top electrode of Ti layer with a thickness of 150 nm thereon.

EXAMPLE 2

E2

The resistor of Example 2 (E2) was prepared by steps and process conditions similar to those of Example 1 (E1), except that the working temperature was 200° C.

EXAMPLE 3

E3

The resistor of Example 3 (E3) was prepared by steps and process conditions similar to those of Example 1 (E1), except that the working temperature was 225° C.

COMPARATIVE EXAMPLE 1

CE1

The resistor of Comparative Example 1 (CE1) was prepared by steps and process conditions similar to those of Example 1 (E1), except that the working temperature was 150° C.

COMPARATIVE EXAMPLE 2

CE2

The resistor of Comparative Example 2 (CE2) was prepared by steps and process conditions similar to those of Example 1 (E1), except that the working temperature was 250° C.

Table 1

<table>
<thead>
<tr>
<th>Examples</th>
<th>Working temperature (°C)</th>
<th>Endurance test (times)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE1</td>
<td>150</td>
<td>4000</td>
</tr>
<tr>
<td>E1</td>
<td>175</td>
<td>6800</td>
</tr>
<tr>
<td>E2</td>
<td>200</td>
<td>10599</td>
</tr>
<tr>
<td>E3</td>
<td>225</td>
<td>7300</td>
</tr>
<tr>
<td>CE2</td>
<td>250</td>
<td>6100</td>
</tr>
</tbody>
</table>

FIG. 2 shows the measured current-voltage (I-V) curves of the test sample of Example 2 (E2), which depicts the 10th time, 100th time, and 1000th time resistive switching cycles, respectively. The I-V curves shown in FIG. 2 are close to each other, indicating that the resistors of Example 2 (E2) exhibit a stable electrical property.

FIG. 3 shows the write/erase cycling test for Example 2 (E2). The write/erase cycling test of Example 2 (E2) was measured by alternately applying a switch-on voltage pulse of +6 V with a pulse-width of 50 ns and a switch-off voltage pulse of −3 V with a pulse width of 50 ns using a power supply (instrument trade name: Agilent 81101A). The resistance of the test sample was measured using the data acquisition instrument (Agilent 4155C), which was set to apply a reading voltage of 0.3 V to the test sample. The results shown in FIG. 3 indicate that the resistor of Example 2 (E2) can be rapidly switched in 50 ns from the write action to the erase action or from the erase action to the write action for over 1000 times.

In conclusion, by fabricating the variable resistance layer of zirconium oxide sandwiched between the bottom electrode of Pt and the top electrode of Ti under a working temperature ranging from 175° C. to 225° C., not only the endurance number of the switching times between ON-state and OFF-state of the resistor for RRAM application is increased, but also the aforesaid drawback of causing defects in the transistors (or the diodes) as encountered in the previous art is eliminated.

While the present invention has been described in connection with what is considered the most practical and preferred embodiment, it is understood that this invention is not limited to the disclosed embodiment but is intended to cover various arrangements included within the spirit and scope of the broadest interpretation and equivalent arrangements.

What is claimed is:
1. A method for fabricating a resistor for a resistance random access memory (RRAM), comprising:
 (a) forming a first electrode over a substrate;
 (b) depositing zirconium oxide on the first electrode by a sputtering technique under a working temperature ranging from 175° C. to 225° C. to form a variable resistance layer of zirconium oxide, wherein formation of the variable resistance zirconium oxide layer at said working temperature enhances a number of times that the resistor can be continuously switched between ON-state and OFF-state during a specified voltage switching span as compared with the number when the variable resistance zirconium oxide layer is formed at said working temperature and the voltage switching span comprises application of a DC voltage sweep from 0 V to +1.5 V, back to 0 V, then to −2.5 V, and back to 0 V with a sweeping voltage step of 0.1 V; and
5. The method of claim 4, wherein formation of the first electrode in step (a) and the second electrode in step (c) is by a process comprising evaporation.

6. The method of claim 4, wherein the first electrode includes a Ti adhesion layer deposited on the substrate and a Pt electrode layer deposited on the Ti layer.

7. A method for fabricating a resistor for a resistance random access memory (RRAM) comprising transistors or diodes, wherein the method comprises:

(a) forming a first electrode over a substrate;
(b) depositing zirconium oxide on the first electrode by a sputtering technique under a working temperature ranging from 175°C to 225°C to form a variable resistance layer of zirconium oxide, wherein formation of the variable resistance zirconium oxide layer at said working temperature enhances a number of times that the resistor can be continuously switched between ON-state and OFF-state during a specified voltage sweeping span as compared with the number when the variable resistance zirconium oxide layer is formed at a working temperature of 250°C, the number being at least 6800 times when the variable resistance zirconium oxide layer is formed at said working temperature and the voltage sweeping span comprises application of a DC voltage sweep from 0 V to +1.5 V, back to 0 V, then to −2.5 V and back to 0 V with a sweeping voltage step of 0.1 V; and
(c) forming a second electrode of Ti on the variable resistance layer.