發明專利說明書 200626164

（本說明書格式、順序及編體字，請勿任意更動，※記號部分請勿填寫）

※ 申請案號：94101379
※ 申請日期：94.1.18
※IPC 分類：A61K35/78

一、發明名稱：(中文/英文)
以茶葉黑色素預防及改善乙醯胺酚(acetaminophen)毒性
PREVENTION AND AMELIORATION OF ACETAMINOPHEN TOXICITY WITH TEA MELANIN

二、申請人：(共1人)
姓名或名稱：(中文/英文)
國立交通大學
NATIONAL CHIAO TUNG UNIVERSITY
代表人：(中文/英文)
張俊彥/CHANG, CHUN-YEN
住居所或營業所地址：(中文/英文)
新竹市大學路1001號
1001 Ta-Hsueh Rd., Hsinchu, Taiwan R.O.C.

國籍：(中文/英文)
中華民國/R.O.C

三、發明人：(共1人)
姓名：(中文/英文)
黃國華/HUANG, G. STEVEN
國籍：(中文/英文)
中華民國/R.O.C
四、聲明事項：

☑ 主張專利法第二十二條第二項☑第一款或☐第二款規定之事實，其事實發生日期為：93年7月20日。

☐ 申請前已向下列國家（地區）申請專利：

【格式請依：受理國家（地區）、申請日、申請案號 順序註記】

☐ 有主張專利法第二十七條第一項國際優先權：

☐ 無主張專利法第二十七條第一項國際優先權：

☐ 主張專利法第二十九條第一項國內優先權：

【格式請依：申請日、申請案號 順序註記】

☐ 主張專利法第三十條生物材料：

☐ 須寄存生物材料者：

國內生物材料 【格式請依：寄存機構、日期、號碼 順序註記】

國外生物材料 【格式請依：寄存國家、機構、日期、號碼 順序註記】

☐ 不須寄存生物材料者：

- 2 -
五、中文發明摘要：

本發明係關於以茶葉黑色素預防及/或改善乙醯胺酚 (acetaminophen) 毒性之方法，其包括於攝取過量乙醯胺酚之前或同時對哺乳動物投與有效量之茶葉黑色素；一種可用於預防或降低乙醯胺酚毒性之含有茶葉黑色素之醫藥組成物，以及含有茶葉黑色素與乙醯胺酚之醫藥組成物。

六、英文發明摘要：

The present invention relates to a method for preventing and/or reducing the toxicity of acetaminophen which comprises administering to a mammal an amount of tea melanin before or simultaneous with dosage of acetaminophen, a pharmaceutical composition containing tea melanin, and a pharmaceutical composition containing tea melanin and acetaminophen for preventing and/or reducing the toxicity of acetaminophen.
七、指定代表圖：
 (一) 本案指定代表圖為：無。
 (二) 本代表圖之元件符號簡明說明：

八、本案若有化學式時，請揭示最能顯示發明特徵的化學式：

無。
九、發明說明：

【發明所屬之技術領域】

本發明係關於以茶葉黑色素預防及改善乙醯胺酚(acetaminophen)毒性之方法，以及可用於預防或降低乙醯胺酚毒性之含茶葉黑色素與乙醯胺酚之醫藥組成物。

【先前技術】

目前尚无文献研究茶叶黑色素於肝毒预防上之功效如何，因此茶叶黑色素可否用於预防因过量NAPAP所至之肝臓损害，以及可否以其免疫刺激特性如免疫刺激剂般作用於
肝臟的網狀內皮系統 (Kate, K. et al., J. Hepatol. 1995, 23, 81-94.) 等作用，實具有深入探討之必要。再者，目前對於攝取過量 NAPAP 中毒之治療方法包括催吐、洗胃、投與乙醯基乙半胱胺以補充穀胱甘肽等等。雖然在攝取過量 NAPAP 之 24 小時內採取這些治療方法，可有效預防肝毒傷害，但這些治療方法的缺點為無法輕易立即或於適當時間內進行且需醫療人員協助。由於 NAPAP 是不需醫師處方且易於取得之藥物，因此，極有需要簡易且有效預防 NAPAP 所致肝毒之方法。

【發明內容】

發明概述

本發明提供一種預防或降低因攝取乙醯胺酚所致毒性之方法，其包括對攝取過量乙醯胺酚之哺乳動物投與有效量之茶葉黑色素。

本發明亦提供一種用於預防或降低因攝取乙醯胺酚所致毒性之藥組成物，其包括預防有效量之茶葉黑色素為活性成分。

本發明進一步提供一種用於預防因攝取乙醯胺酚所致毒性之含乙醯胺酚之藥組成物，其包括乙醯胺酚以及茶葉黑色素為活性成分。

發明之詳細說明

本案發明人發現茶葉黑色素對細胞色素 P450 具有抑制功效，以及茶葉黑色素可回復 NAPAP 所抑制之免疫力。因此，本發明目的為利用茶葉黑色素的抗氧化作用，對細胞色
素 P450 之抑制功效，以及免疫调节功效等特性来预防及/或降低摄取过量乙醛胺酚所致之毒性，特别是肝脏毒性。换言之，本发明目的係利用茶叶黑色素阻断 NAPAP 数個引发毒性之主要路径，达到有效预防及/或降低 NAPAP 之中毒情形，如此可使病人於摄取较高剂量乙醛胺酚寻求较佳治疗效果之際，可藉由茶叶黑色素免除中毒之危险性。此外，茶叶黑色素亦可用於对乙醛胺酚特别敏感的病人，例如酒精中毒者，防止受到乙醛胺酚的毒性影响。

本发明之一具体例中，TSM (10 mg/kg 至 40 mg/kg) 可有效预防 NAPAP (400 mg/kg) 中毒之致死率，經由丙胺酸胺基转移酶 (ALT)，还原型穀胱甘肽 (GSH)，以及氧化型穀胱甘肽 (GSSG) 活性分析可知，TSM 可有效抑制 GSH 的减少及 NAPAP 引起的肝脏损害。又另一具体例中，TSM 对細胞色素同功酶 P450 2E1 具有剂量依存性抑制作用，因此經由抑制 P450 2E1 活性來減少 NAPAP 产生 NAPQI，藉此减少 NAPQI 與 GSH 共價結合，進而防止 NAPQI 聚積於肝脏。根据此二具体例中，茶葉黑色素具有抑制细胞色素同功酶 P450 2E1 之功效，以及有效降低 NAPAP 誘發之肝脏 GSH 的消耗。

本发明之另一具体例中，TSM (10 mg/kg 至 40 mg/kg) 以剂量依存性方式減少 NAPAP 引起的脂質過氧化作用。又本发明之一具体例中，TSM 可活化肝脏超氧化物歧化酶 (SOD)。以及本发明之另一具体例中，TSM 可回复受 NAPAP 影响而减少的肝脏内生性 CoQ9 及 CoQ10 含量。根据此等具体例，茶葉黑色素之抗氧化剂特性可降低 NAPAP 造成的细胞
胞氧化性壓力，進而達到預防NAPAP中毒之功效。

又本發明之另一具體例中，透過體內抗體形成細胞(AFC)反應，證明TSM可恢復NAPAP所抑制之免疫力。因此茶葉黑色素具有免疫調節功能，預防NAPAP引起免疫抑制之情形。

根據本發明，本發明係關於一種預防或降低因攝取乙醯胺酚所致毒性之方法，其包括對攝取過量乙醯胺酚之哺乳動物投與有效量之茶葉黑色素，其中茶葉黑色素可在攝取乙醯胺酚之前，同時或之後投與哺乳動物。

本發明之一部分係關於一種用於預防或降低因攝取乙醯胺酚所致毒性之藥物組成物，其包括有效量之茶葉黑色素為活性成分。

本發明之另一部分係關於一種用於預防因攝取乙醯胺酚所致毒性之酶藥組成物，其包括乙醯胺酚以及茶葉黑色素為活性成分。

本發明之另一部分係關於一種用於預防因攝取乙醯胺酚所致毒性之酶藥組成物，其包括乙醯胺酚以及茶葉黑色素為活性成分。

根據本發明之方法，其中對病人投與有效量之茶葉黑色素時，該劑量以0.1 mg/kg體重至3 mg/kg體重為佳。又根據本發明之酶藥組成物，其中茶葉黑色素之有效劑量以0.1 mg/kg體重至3 mg/kg體重為佳。

本發明中所指之哺乳動物，較佳為人類。

本發明之酶藥組成物製作為藥劑時，可與活性成分酶藥
上可接受之載劑混合製作為藥劑形式，包括但不限制為錠劑，膠囊，粉末，溶液，或懸浮液等形式。

本發明之方法以及藥物組成物之投與方式，包括但不限制為口服，非噩腸或腹腔內投與，例如靜脈內投與以及肌肉內投與。此外，本發明之方法，對攝取乙醯胺酚之哺乳動物投與有效量茶葉黑色素時，其中茶葉黑色素可與乙醯胺酚以分開之劑形投與，或二者共同於一藥物組成物中一起投與。

【實施方式】

以下提供具體實施例詳細說明本發明，藉此舉例說明達到清楚了解本發明之目的，故不因該實施例而於任何方面限制本發明。

材料及方法

材料

下文有關預防乙醯胺酚毒性試驗所用之茶葉黑色素是萃取自山茶(Thea sinensis Linn)，採收自臺灣苗栗)樹葉之茶葉黑色素(TSM)，該山茶(Thea sinensis Linn)樹葉樣品業已經中國醫藥大學中國藥學研究所(Institute of Chinese Pharmaceutical Sciences, China Medical University, Taichung, Taiwan.)鑑定，並寄存於該所植物標本室，寄存編號：GSH-001。NAPAP，EDTA，Tris-HCl，Triton X-100，Sephadex G-75，分子大小標記，以及血清丙胺酸胺基轉移酶活性測試套組是購自Sigma Chemical Co.(St. Louis, MO)。全部其他化學試劑購自Merck(Darmstadt, Germany)，皆為分析級或更高級。
TSM之萃取、純化及其物化特性

TSM的萃取是依據Sava, V. M. et al., Food Chemistry 2001, 73, 177-184發表之方法，作適當修改進行。詳言之，萃取時間減少至12小時以避免TSM過度氧化。萃取之後，過濾混合物並以15,000g離心30分鐘得到TSM萃取物，添加2N HCl至pH2.5酸化萃取物，以15,000g離心15分鐘成小片形式。進行酸解純化TSM。將所得純化產物溶解於0.2%NH₄OH，然後將該溶液進行反覆沉澱作用。沉澱步驟另重覆3次使TSM從低分子不純物中分出，並增進其均質性。透過Nalgene0.45μm注射過濾器過濾所得溶液。最後，在SephadexG-75管柱(管柱尺寸爲1.6×40cm)於50mM磷酸緩衝液(pH7.5)中以0.5ml·min⁻¹流速純化TSM。在280nm偵測各部分。SephadexG-75管柱經大小標記：牛血清白蛋白(MM66,000)、碳酸酐酶(MM29,000)、細胞色素C(MM12,400)、以及抑肽酶(aprotinin)(MM6,500)校正，估算TSM的分子質量(MM)。

TSM之物化特性依據慣用方法進行(Nicolaus, R. Melanins, Hermann; Paris, France, 1968.; Prota, G. Melanins and melanogenesis, Academic Press; San Diego, 1998.)。以JASCO V-530 UV-Visible分光光度計(Jasco Ltd., Great Dunmow, UK)獲得UV吸收光譜。於Perkin-Elmer spectrometer 1600 FT(Perkin-Elmer Instruments, Norwalk, CT)記錄KBr樣品紅外線(IR)光譜。此外，亦利用水、酸水溶液及常用有機溶劑之溶解度，經由KMnO₄、K₂Cr₂O₇、
NaOCl 及 H₂O₂ 之氧化漂白，多酚之阳性反应等进行黑色素之典型测试。

动物及处理

使用成年 ICR 雄鼠 (30±5 g) 进行全部实验，将动物饲养于温度 25±2°C 以及 12 小时日 / 夜循环之温控环境下，可自由摄取食物及饮水，但于实验处理前禁食隔夜。动物分成数组，包括对照组（未接受任何处理）、负对照组（单独接受 TSM）、正对照组（单独接受 NAPAP），以及实验组（接受 NAPAP 及 TSM）。每一试验组有 6 隻老鼠。NAPAP 是溶解于标准生理食盐水 (pH 7.4)，并以 400 mg/kg 之剂量腹膜内 (i.p.) 投与。TSM 是溶解于蒸馏水 (pH 7.2)，并以 10 mg/kg、20 mg/kg、30 mg/kg 或 40 mg/kg 之剂量于中毒 2 小时之前由腹膜内 (i.p.) 投与。全部动物于曝露 NAPAP 24 小时中毒后以乙醚麻醉牺牲。使用市售套组 (Sigma 505-P) 经由心脏穿刺抽取血液样本用于丙氨酸氨基转移酶 (ALT) 活性分析。取出肝脏并以标准生理食盐水洗除血液，然后用于测定原型凝胶化苷肽 (GSH)、氧化型凝胶化苷肽 (GSSG)、超氧物岐化酶 (SOD)、硫巴比妥酸反应性物质 (TBARS)、以及还原型辅酶 Q9 (CoQ9) 及 Q10 (CoQ10)。

实施例 1

TSM 对乙酰胺酚毒性之影响：GSH 及 GSSG 分析以及 ALT 活性分析

冷凍肝臓組織於補充以 5 mM EDTA 之 5% 三氯乙酸 (TCA) 中，在氮气流下进行均质化，然后在 4 °C 以 20,000 g

表 1 顯示 TSM 對 NAPAP 毒性之影響。單獨投與 40 mg/kg TSM 並未造成任何毒性。由活動性觀之，實驗組與對照組動物的行爲類似。但相較於對照組，單獨處以 NAPAP (400 mg/kg) 的全部動物皆生病而無法於籠子內移動。由 ALT 濃度急遽顯著地提高可知，如此處理造成老鼠肝細胞受損。中毒前預先處以 TSM 2 小時之動物呈現抗 NAPAP 之保護作用。TSM 對 NAPAP 之挑釁引起劑量依存性效果，亦即以 10 mg/kg、20 mg/kg、30 mg/kg 劑量之 TSM 給予動物時，血漿 ALT 濃度分別降低至對照組的 74%、14%、及 3%。投與最高 TSM 劑量 (40 mg/kg)之組別完全阻斷 NAPAP 肝毒。單獨投與 400 mg/kg NAPAP 之動物致死率為 66%。而單獨投與 40 mg/kg TSM 本身並未造成動物死亡。因此，先於 NAPAP 將 TSM (10-40 mg/kg) 掀與動物，可預防動物致死之情形。

表 1 亦顯示投與 NAPAP 24 小時後測定之肝臟 GSH 濃度不受 TSM 本身影響。單獨投與 NAPAP 之組別顯著耗盡 GSH 濃度 (相較於對照組 2.6 倍)。預處以 TSM 可減少 GSH 消耗之情形證明 TSM 具有劑量依存性之保護功效。由 GSSG
濃度恢復至約相同程度可推測，GSH 的減少並非因 GSH 與穀胱甘肽過氧化酶反應所致，而是穀胱甘肽與 NAPQI 結合所致。

表 1：TSM 對 NAPAP 毒性之影響

<table>
<thead>
<tr>
<th>動物組別注</th>
<th>死亡率</th>
<th>ALT (U/L)</th>
<th>GSH (nmol/mg 蛋白質)</th>
<th>GSSG (nmol/mg 蛋白質)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>死亡/總數</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>對照組</td>
<td>0/6</td>
<td>42±4</td>
<td>39±4</td>
<td>3.5±0.4</td>
</tr>
<tr>
<td>TSM (40 mg/kg)</td>
<td>0/6</td>
<td>40±5</td>
<td>40±3</td>
<td>3.6±0.3</td>
</tr>
<tr>
<td>NAPAP (400 mg/kg)</td>
<td>2/6</td>
<td>2043±231**</td>
<td>13±1**</td>
<td>3.2±0.4</td>
</tr>
<tr>
<td>TSM (10 mg/kg) +</td>
<td>0/6</td>
<td>1528±142**</td>
<td>15±2**</td>
<td>3.5±0.3</td>
</tr>
<tr>
<td>NAPAP (400 mg/kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSM (20 mg/kg) +</td>
<td>0/6</td>
<td>298±30**</td>
<td>22±2*</td>
<td>2.9±0.2</td>
</tr>
<tr>
<td>NAPAP (400 mg/kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSM (30 mg/kg) +</td>
<td>0/6</td>
<td>63±5*</td>
<td>28±3*</td>
<td>3.3±0.2</td>
</tr>
<tr>
<td>NAPAP (400 mg/kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSM (40 mg/kg) +</td>
<td>0/6</td>
<td>43±5</td>
<td>28±2*</td>
<td>3.1±0.3</td>
</tr>
</tbody>
</table>

注 a 對照組老鼠給予生理食鹽水。實驗組動物接受 TSM (10, 20, 30 或 40 mg/kg, i.p.) 以及 NAPAP (400 mg/kg, i.p.)，NAPAP 於投與 TSM 2 小時後注射。

注 b 曝露 NAPAP 24 小時後評估毒性效力，數據以平均 ± SEM 表示。

注 c 與對照組具有意義之差異 [(*)P<0.05; (**P)<0.01)]。
實施例 2

TSM 對細胞色素 P450 加單氧酶之肝臟同功酶活性之影響：

P450 同功酶之活性評估

實験於 5 組 ICR 老鼠進行，每一組有 6 隻老鼠。以 i.p
對動物投與不同劑量 TSM (0 mg/kg, 10 mg/kg, 20 mg/kg,
30 mg/kg, 以及 40 mg/kg)。注射 24 小時後犧牲動物，移出
肝臟並注满冰冷 KCl(154 mM)，於含有 50 mM Tris-HCl 及
154 mM KCl (pH 7.4)之緩衝液中均質化。在 4 °C 以 9,000 g
離心均質物 20 分鐘，然後在 4 °C 以 105,000 g 離心 90 分鐘
將微粒體部分從上清液分出。以均質化緩衝液清洗微粒體小
片，在 4 °C 以 105,000 g 再次離心 90 分鐘，然後懸浮於 250
mM 蔗糖。根據 Burke 及 Mayer (Burke, M. D. et al.,
Biochem. Pharmacol. 1994, 48, 923-36.) 所述方法測量乙氧
基試鈣試 O-脫烷烴酶 (ethoxyresorufin O-dealkylase) (P450
2A1) 及戊氧基試鈣試 O-脫烷烴酶 (pentoxyresorufin
O-alkylase) (P450 2B1) 活性。以 Peng 等人之方法 (Peng, R. et
al., Carcinogenesis 1982, 3, 1457-1461.) 測定 N-亞硝基二
甲基胺脫甲基酶 (P450 2E1) 活性，作爲 P450 2E1 活性指數。

表 2 顯示 TSM 對細胞色素 P450 加單氧酶之肝臟同功酶
活性之影響。結果顯示預投與 TSM 引起細胞色素 P450 之肝
臟同功酶活性受到抑制。為測定 TSM 對各種 P450 同功酶之
相對抑制效果，使用不同受質與肝臟微粒體一起培育。TSM
造成 P450 2E1 的劑量依存性抑制作用，其專一 N-亞硝基二
甲基胺脱甲基酶活性具有ED₅₀值为15.8 mg/kg体重。P450 2A1及P450 2B1活性未显著改变。

表2：TSM对细胞色素P450加单氧酶之肝脏同功酶活性之影响

<table>
<thead>
<tr>
<th>実験條件</th>
<th>P450同功酶之活性 a</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2A1</td>
</tr>
<tr>
<td>對照組（賦形劑）</td>
<td>7.35±1.23</td>
</tr>
<tr>
<td>TSM 10mg/kg</td>
<td>7.5±1.41</td>
</tr>
<tr>
<td>TSM 20mg/kg</td>
<td>7.28±1.11</td>
</tr>
<tr>
<td>TSM 30mg/kg</td>
<td>7.44±1.25</td>
</tr>
<tr>
<td>TSM 40mg/kg</td>
<td>7.64±1.52</td>
</tr>
</tbody>
</table>

a 活性以6隻老鼠的平均±SEM表示。酵素活性如下表示：2A1及2B1—來自試鰭鮮之量（pmol/min.mg蛋白質）；2E1—來自甲醛之量（nmol/min.mg蛋白質）。

b 值與對照組具有意義之差異（P<0.01）。

実施例3

TSM对NAPAP引起脂質過氧化作用之影響：TBARS之測定

簡言之，肝臟於冰冷1.15%KCl (w/v)中，然後取0.4 mL均質物與1mL之0.375%硫巴比妥酸、15%TCA (w/v)、0.25 N HCl及6.8 mM丁基化羥甲苯混合，置入沸水水浴10分鐘，移出，然後置冰上冷卻。
3,000 r.p.m. 靈心 10 分 鐘 後 測 量 上 清 液 的 吸 光 度 (532 nm)。
所 產 生 之 TBARS 量 以 每 毫 克 蛋 白 質 之 nmol TBARS 來 表
示，並 使 用 丙 二 醛 貳 (二 甲 基 乙 縮 醛) 校 正 之。

第 1 圖 為 投 與 NAPAP(400 mg/kg) 前 2 小 時 對 老 鼠 投 與
各 種 劑 量 TSM，評 估 TSM 對 TBARS 聚 積 於 肝 臟 之 影 響。 實
驗 結 果 顯 示，預 先 投 予 的 TSM 可 以 劑 量 依 存 性 方 式 顯 著 減
少 NAPAP 引 起 脂 質 過 氧 化 作 用。 其 中 TSM 劑 量 增 加 至 最 高
量 時，對 過 氧 化 作 用 之 抑 制 造 成 TBARS 的 完 全 阻 斷。 相 較
於 對 照 組（未 處 理），單 獨 投 與 TSM（負 對 照 組） 時 未 造 成 任
何 顯 著 影 響。

實 施 例 4

超 氧 物 砜 化 酶 (SOD) 之 分 析

老 鼠 肝 臟 超 氧 物 砜 化 酶 (SOD) 活 性 之 測 定，是 根 據 羅 基
氨 與 超 氧 化 物 難 離 子 基 之 氧 化 反 應 中，抑 制 亞 硝 酸 鹽 之 形 成
(Elstner，E. F. and Heupel，A. Anal. Biochem. 1976，70，
616-620.)。 亞 硝 酸 鹽 產 生 於 含 有 25 μL 碱 嘌 呤 素 (15 mM)、
25 μL 氧 化 羅 基 氨 (10 mM) 250 μL 磷 酸 餞 銀 液 (65 mM，pH
7.8)、90 μL 蒸 餞 水 及 100 μL 黃 嘌 呤 素 氧 化 酶 (0.1 U/μL)之
混 合 物 中。 在 25 °C 與 10 μL 肝 臟 萃 取 物 作 用 20 分 鐘 來 分
析 SOD 之 抑 制 效 果。 所 得 亞 硝 酸 鹽 之 測 定 是 在 0.5 mL 碘 脦
酸 (3.3 mg/mL) 與 0.5 mL α- 茚 胺 (1 mg/mL) 之 反 應 (在 室 溫 20
分 鐘) 中 進 行。 以 Ultrospec III 分 光 光 度 計 (Pharmacia，LKB)
測 量 在 530 nm 之 吸 光 度。 所 得 結 果 以 每 毫 克 蛋 白 質 之 經 計
算 SOD 活 性 單 位 表 示 之。
第2圖為各種劑量TSM對經NAPAP中毒之ICR老鼠的肝臟SOD活性影響。結果顯示相較於對照組，NAPAP的導入造成SOD活性減少約4倍。而注射NAPAP之2小時前投與TSM(10-40mg/kg)，可顯著恢復SOD活性。在較高劑量TSM可回復SOD活性達到高峰，代表TSM維持SOD活性於負對照組程度之能力。單獨投與TSM不影響SOD活性。此結果指示TSM對SOD活化為間接影響。

實施例5

輔酶Q之分析

以Ikenoya等人之方法進行還原型CoQ9及CoQ10之測定(Ikenoya, S. et al., Chem Pharm Bull. 1981, 29, 158-64. 28)。肝臟組織於冰冷水中在氮氣流下均質化。以乙醇：正己烷(2:5v/v)之混合物萃取輔酶Q，然後收集正己烷層。使用旋轉蒸發器蒸發溶劑，然後再溶解於乙醇中。利用HPLC以Jasco 840EC偵測器及Chemosorb ODS-H管柱(4.6×250mm)分析萃取物。動相由補充以0.7%NaClO4H2O之乙醇：甲醇：70%HClO4(700:300:1v/v)所組成。

第3圖為各種劑量TSM對投與400mg/kgNAPAP之老鼠肝臟內生性CoQ9及CoQ10含量的影響。結果顯示NAPAP本身即可顯著減少動物肝臟中還原型抗氧化劑酶素CoQ9及CoQ10的含量。亦即相較於負對照組，輔酶Q10含量減少55%。CoQ9含量減少60%。投與NAPAP之2小時前投與TSM，可以劑量衣存性方式增加兩種抗氧化劑的量。最高劑量TSM(40mg/kg)降低輔酶Q9含量至對照組的83%，但增
加 Q₁₀ 至 113%。然而相較於對照組，單獨投與相同劑量 TSM 並未產生任何顯著差異，此結果指示 TSM 對輔酶 Q 爲間接影響。

實施例 6
抗體製造反應之評估

實驗分為 10 組 ICR 老鼠進行，每一組有 4 隻老鼠。前 5 組以 i.p. 注射下列單劑 TSM: 0 mg/kg, 10 mg/kg, 20 mg/kg, 30 mg/kg, 以及 40 mg/kg。後 5 組類似前組注射 TSM，但 2 小時後對動物 i.p. 注射 400 mg/kg NAPAP。TSM 或 TSM + NAPAP 投與 1 天之後，將製備於 0.2 mL 生理食鹽水之 1x10⁸ 綿羊紅血球 (SRBC) 注入尾巴靜脈。額外 4 隻動物僅接受 SRBC (抗原對照組)。以 SRBC 激敏作用 4 天之後，犧牲動物並取出脾臟。從每一脾臟製備單一脾細胞於 5 mL 的 RPMI-1640 培養基。使用斑點分析 (plaque assay) 進行抗體形成細胞 (AFC) 之計算 (Jerne, N. K. and Nordin, A. A. Science 1963, 140, 405.)。以 10⁶ 脾細胞為單位計算 AFC 值。

第 4 圖為各種劑量 TSM 對投與 NAPAP 老鼠脾細胞之抗體形成反應的影響。進行活體內抗體形成反應，評估單獨投與 TSM 與 TSM+NAPAP 對 ICR 老鼠體液性免疫力的影響。結果證明 TSM 具有劑量依存性免疫刺激功效，類似於前述 BALB/C 老鼠所得結果 (Sava, V. M. et al., Food Res. Int. 2001, 34, 337-343.)。投與 30-40 mg/kg 劑量 TSM 之組別，抗體分泌細胞比抗原對照組顯著 (P<0.05) 製造更多抗體 (26-28 %)。NAPAP 的投與相對於抗原對照組造成 26%的
AFC抑制。NAPAP中毒前预投与TSM，可以剂量依存性方式增加AFC，并从20 mg/kg剂量之TSM开始有效回复TSM免疫力至抗原对照组程度。

【图式简单说明】

第1图为投与NAPAP(400 mg/kg)前2小时，对老鼠投与各种剂量TSM后对TBARS聚积于肝臓之影响。结果以6个实验之平均±SEM表示。条状C为未接受任何处理之对照组的TBARS浓度。条状NC代表负对照组，条状PC代表正对照组，以及数字表示TSM剂量(mg/kg)。星号代表正对照组与NAPAP及TSM联合效果之间具有显著差異

\[(**P < 0.05; (**P < 0.01) \]

第2图为各种剂量TSM对经NAPAP中毒之ICR老鼠肝臓SOD活性之影响。结果以6个实验之平均±SEM表示。条状C为未接受任何处理之对照组的SOD活性。条状NC代表负对照组，条状PC代表正对照组，以及数字表示TSM剂量(mg/kg)。星号代表正对照组与NAPAP及TSM联合效果之间具有显著差異

\[(**P < 0.05; (**P < 0.01) \]

第3图为各种剂量TSM对投与400 mg/kg NAPAP之老鼠肝臓内生性CoQ9(实心条状)及CoQ10(空心条状)含量之影响。结果以6个实验之平均±SEM表示。条状C为未接受任何处理之对照组的CoQ9及CoQ10浓度。条状NC代表负对照组，条状PC代表正对照组，以及数字表示TSM剂量(mg/kg)。星号代表正对照组与NAPAP及TSM联合效果之间具有显著差異

\[(**P < 0.05; (**P < 0.01) \]
第4図為各種劑量TSM對投與NAPAP老鼠脾細胞之抗體形成反應之影響。方形代表TSM本身之效果，圓形代表TSM+NAPAP連合之效果。點線代表抗原對照組。老鼠於TSM及/或NAPAP投與1天之後，以SRBC激敏。平均及SEM(標準誤差)是得自4隻動物。星號代表抗原對照組與NAPAP及TSM連合效果之間具有顯著差異\([(*)P<0.05;\quad (**P)<0.01]\)。
十、申請專利範圍：

1. 一種用於哺乳動物預防或降低因攝取乙醯胺酚 (acetaminophen) 所致毒性之醫藥組成物，其中有效量的茶葉黑色素為活性成分。

2. 如申請專利範圍第 1 項之醫藥組成物，其中哺乳動物為人類。

3. 如申請專利範圍第 1 項之醫藥組成物，其中茶葉黑色素之有效量為 0.1 mg/kg 體重至 3 mg/kg 體重。

4. 如申請專利範圍第 1 項之醫藥組成物，其中該茶葉黑色素係於攝取乙醯胺酚前使用。

5. 如申請專利範圍第 1 項之醫藥組成物，其中該茶葉黑色素係於攝取乙醯胺酚時同時使用。

6. 如申請專利範圍第 1 項之醫藥組成物，其中該茶葉黑色素可用於口服投與。

7. 如申請專利範圍第 1 項之醫藥組成物，其中該茶葉黑色素可用於靜脈內投與。

8. 如申請專利範圍第 1 項之醫藥組成物，其中該茶葉黑色素可用於肌肉內投與。

9. 一種用於哺乳動物預防或降低因攝取乙醯胺酚 (acetaminophen) 所致毒性之含乙醯胺酚之醫藥組成物，其中包括乙醯胺酚以及茶葉黑色素為活性成分。

10. 如申請專利範圍第 9 項之醫藥組成物，其中所含茶葉黑色素量可有效預防或降低該醫藥組成物中乙醯胺酚毒性。

11. 如申請專利範圍第 9 項之醫藥組成物，其中哺乳動物為人類。
12. 如申請專利範圍第9項之藥物組成物，其中茶葉黑色素之有效量為0.1 mg/kg體重至3mg/kg體重。
十一、圖式：

第1圖
第 3 圖
第4圖