行政院國家科學委員會補助專題研究計畫

成果報告

經由非線性分析與功率消耗分析求致

Sigma-Delta Modulator ADC 之設計最佳化

計畫類別：V 個別型計畫 □整合型計畫
計畫編號：NSC 96-2221-E-009-225-MY3
執行期間：民國 96 年 8 月 1 日至 99 年 7 月 31 日

執行機構及系所：國立交通大學電機工程學系

計畫主持人：陳福川
共同主持人：
計畫參與人員：

成果報告類型（依經費核定清單規定繳交）：□精簡報告 V 完整報告

本計畫除繳交成果報告外，另須繳交以下出國心得報告：
□赴國外出差或研習心得報告
□赴大陸地區出差或研習心得報告
□出席國際學術會議心得報告
□國際合作研究計畫國外研究報告

處理方式：除列管計畫及下列情形者外，得立即公開查詢
□涉及專利或其他智慧財產權，□一年□二年後可公開查詢

中華民國 99 年 10 月 22 日
經由非線性分析與功率消耗分析求致

Sigma-Delta Modulator ADC 之設計最佳化

主持人：陳福川

執行機構：國立交通大學電機工程學系

執行期間：民國96年8月1日至99年7月31日

國科會計畫編號：NSC 96-2221-E-009-225-MY3

摘 要

傳統高階積分三角調變器的設計上，主要是依賴行為模擬的方法。然而此方法實在相當耗時。本成果是第一個提出使用模組化設計的方法去設計積分三角調變器。在時間上，使用模組化的設計方法將會比使用行為模擬的方法快上萬倍。由於之前非理想雜訊及失真模型不完備，模組化設計的方法一直無法真正的去實現。現在，因為積分器充放電雜訊模型以及放大器的非線性直流增益諧波失真模型的推出，使得模組化設計方法得以實現。然而，使用模組化設計將會遇到雜訊相依的問題；本成果提出雜訊相依模型以便解決這個問題。除此之外，本成果也同時提出積分三角調變器最佳化設計流程。相對於兩篇積分三角調變器設計實例，模組化積分三角調變器最佳化設計將可以使用更短的時間去達到更高的訊號對雜訊以及失真比，同時降低積分三角調變器的功率消耗。
Design Optimization of Discrete-time Single-Loop Sigma-Delta ADCs via Nonideality and Power Analyses

Fu-Chuang Chen

Abstract — A conventional ΣΔ ADC design approach is a time consuming process and needs much trials and errors. An optimization algorithm for the discrete-time single-loop ΣΔ ADCs design is proposed. Circuit nonideality models are derived in output noise power forms through a systematic circuit imperfection study. A power model is also presented in order to estimate relative power consumption. These models reveal that design parameter variation can potentially affect several noises and errors in different ways, and may change system power consumption. This design complexity is qualitatively summarized into a table. Model completeness allows us to propose an optimization algorithm to search globally for a design parameter combination which meets SNR requirement while minimizing power consumption. Our optimization algorithm is tested against two published design results, and is verified by behavior simulations. Comparisons with behavioral-simulation-based optimization approaches are also made.

Index Terms—Sigma delta modulator, noise model, power model, optimization

I. INTRODUCTION

ΣΔ modulators are widely used for high-resolution analog-to-digital conversion applications, achieving resolutions up to 12–20 bits. The earlier focus is on low to medium speed applications, such as audio [1, 2, 3], voice codec, and DSP chip [4]. Recently, ΣΔ ADCs have been applied to higher bandwidth signals, and low power designs are frequently emphasized. For example, in xDSL [5, 6] applications, signals up to 2.2MHz must be handled. Since significantly increasing the sampling rate is difficult, designers either seek to increase the order or the cascade stages [7, 8, 9], or employ multi-bit quantization [10, 11], or both, in order to achieve the required dynamic range. DAC linearity can be improved due to process technology advances, making the multi-bit architecture more popular. New technologies also help reduce power consumption [12]. The ΣΔ modulator design is a complex and a time consuming process, because many coupled design parameters must be determined. Coming up with an acceptable design is very challenging with increasing design specification demands. Even an acceptable design may not be the best one. The paper proposes an optimization approach to increase automation and reduce complexity in single-loop ΣΔ ADCs design.

To propose an optimization algorithm for single-loop ΣΔ modulators, we need a complete set of important nonideality models and the power consumption model. Some issues concerning ΣΔ modulator noise and error modeling appeared in [2, 3, 13-22]. System simulation tools were proposed in [13] and [22]. The results in [14-16] are not expressed in noise power forms, so the relations between circuit parameters and noise powers are not clear. Reference [17] worked on the settling noise and the thermal noise, but certain settling error assumptions are not general enough to handle multi-bit cases. Results in [19] [20] focus on device noises such as thermal noise and flicker noise. Flicker noise is not considered in this work because it is affected by factors less correlated to the ΣΔ modulator circuit parameters treated in this paper. The available models discussed above are either incomplete, or not in the form we require. In section II, we will elaborate on settling noise, DAC noise, OTA thermal noise, and reference voltage thermal noise. We will also categorize all major nonidealities into five parts, and express their models in noise power forms under a multi-bit setup. Power consumption models for ΣΔ modulator analog, digital and multi-bit quantizer parts [23, 24, 25] will also be given.

An optimization design scheme is proposed in section III. It essentially combines system and circuit level designs, and optimizes all design parameters at the same time. This paper works on optimization of SNR, not SNDR. Nonlinear distortions are not considered in this paper. There exist applications where nonlinear distortions are often neglected. For example, in low-frequency, high resolution applications such as sensor signal conversion, people consider SNR only, and SNDR is not needed. The design optimization scheme is verified in section IV, and comparisons with behavior-simulation-based optimization schemes [48, 49] are also discussed. Conclusions are presented in section V. Then a nonlinear settling distortion analysis is given in the Appendix A to resolve issues in Section IV. Finally several modified noise power models for the circuit structure of [28] are provided in Appendix B.

II. MODELS OF NONIDEALITIES AND POWER

Proposing an optimization algorithm for searching design parameters which maximizes ΣΔ ADC SNR while minimizing power consumption is one of the primary purposes in this paper. Model completeness determines success of this goal. The ΣΔ modulator nonidealities are categorized into five parts in this section: finite OTA gain error, thermal noise, settling error, multi-bit DAC noise, and jitter noise. All nonideality
models are expressed in noise power forms, which can

\[P_{\text{eq}} = n \cdot \frac{8kT}{C_s} \]

(2)

Hence, the equivalent noise source \(V_{eq} \) at OTA input shown in Fig. 2.

![Diagram of integrator and DAC branches](image)

Fig. 1 Integrator and the DAC branches

directly add to ideal quantization noise power. All noise power models discussed in the following are based on the integrator scheme, as shown in Fig. 1. In Fig. 1, \(C_u \) is the unit capacitor whose capacitance is \(\frac{C_s}{2^n} \). The power consumption model is presented as the last part of this section.

A. Finite OTA Gain Error

For a general single-loop \(n \)th order \(\Sigma \Delta \) modulator with finite OTA gain \(A \), the modified quantization noise is expressed as [18]

\[P_{\text{Q(int)}} = \frac{A^2}{12} \left[\frac{\pi^{2n}}{(2n+1) \cdot \text{OSR}^{2n+1}} + \left(\frac{a_1}{A} \right)^2 \cdot \frac{\pi^{2n-2} \cdot n}{(2n-1) \cdot \text{OSR}^{2n-1}} \right] \]

(1)

where \(P_Q \) is the original quantization noise, \(a_1 \) is the gain of the integrator at the first stage, and \(A \) is the quantizer step size. The \(P_{\text{AV}} \) in (1) is due to finite OTA gain, and can be considered as an additive quantization noise power.

B. Thermal Noise (Switch, OTA, Reference circuits)

There are three thermal noise sources in the \(\Sigma \Delta \) modulator, in MOS switches, OTAs and reference voltage. The analyses are shown separately as follows.

The total output switches thermal noise power from the switched capacitor integrator is [18, 23]

\[P_{sw} = \frac{1}{\text{OSR}} \cdot \frac{8kT}{C_s} \]

(2)

Half of \(P_{sw} \) is from the input branch, and the other half is from the DAC branch.

The OTA transistor thermal noise can be modeled as an equivalent noise source \(V_{no} \) at OTA input shown in Fig. 2.

Fig. 2 Equivalent circuits of sampling and integration phases

In deep submicron process \(V_{no} \cong \frac{\alpha \cdot 10kT}{\text{gm1}} \cdot \frac{V^2}{\text{Hz}} \) [26], thermal noise power at integrator output in the sampling phase is

\[P_{\text{OTA}}(\text{samp}) = V_{no} \cdot GBW_{\text{AW}} \cdot \frac{\pi}{2} \cdot \frac{10\alpha \cdot kT}{4\text{ACS}} \]

(3)

During the integration phase (Fig. 2b), the circuit looks like a non-inverting amplifier, with

\[\frac{V_o}{V_{no}}(s) = \left(\frac{2a_1 + 1 + 2sC_iR}{1 + 2sC_iR} \right) \]

(4)

The OTA noise power at the first integrator output can be expressed as

\[P_{\text{OTA}}(\text{int}) = \int_{0}^{\infty} \cdot V_{no} \cdot \left(\frac{V_o}{V_{no}} \right) \cdot df \]

(5)

Finally, the total OTA thermal noise power at the \(\Sigma \Delta \) ADC output can be obtained as

\[P_{\text{OTA}} = \frac{1}{\text{OSR}} \cdot \left(\frac{1}{a_1} \right)^2 \cdot \left(P_{\text{OTA}}(\text{samp}) + P_{\text{OTA}}(\text{int}) \right) \]

(6)

Consider the bandgap reference circuit in Fig. 3 [27]. Reference output noise is nearly equivalent to OTA input referred noise [27], so it can be expressed as \(V_{ref}^2 = V_{no}^2 \). Different integrator schemes can introduce reference noise in different ways [5, 11, 28]. The case shown in Fig. 4 is considered, where this noise is introduced only in the sampling phase. If the reference noise is unbuffere, its noise power at the \(\Sigma \Delta \) ADC output can be derived as

\[P_{ref} = \frac{1}{\text{OSR}} \cdot \int_{0}^{\infty} \cdot \frac{V_{ref}^2}{1 + 4\pi^2 RC_s^2} \cdot df = \frac{V_{ref}^2}{\text{OSR} \cdot 4RC_s} \]

(7)

It’s usual to add buffers between the bandgap circuits [29] and the DAC paths. Denote the 3dB buffer bandwidth as \(BW_b \). If \(BW_b \) is smaller than \(\frac{1}{4\text{OSR}} \), \(P_{ref} \) in (7) is changed to be \(P_{ref} = \frac{V_{ref}^2 \cdot \pi \cdot BW_b}{2 \cdot \text{OSR}} \). If \(BW_b \) is larger than \(\frac{1}{4\text{OSR}} \), (7) is applied.
C. Settling Error

As $\Sigma\Delta$ modulator sampling frequency increases, and

$$\begin{align*}
T = V \cdot \sigma \cdot \tau_S \cdot S \cdot C,
\end{align*}$$

1

Fig. 3 A bandgap voltage reference circuit

$$\frac{R}{V_{ref}}$$

Fig. 4 Equivalent circuit while considering reference voltage noise

multi-bit quantization becomes a high resolution and high-speed application trend, the dynamic settling problem of switched capacitor integrator becomes a more dominant factor. Previous articles have mentioned the settling error [14, 21, 30]. References [14] and [30] provide behavior models, which are tedious and integrate poorly with noise-power models of other noises or errors. The noise-power model of [21] is very primitive since it assumes the p.d.f. (probability density function) settling error is uniformly distributed, and does not consider multi-bit quantization. We only consider the integrator at the first stage. Settling errors at later stages are less influential due to noise shaping.

Now consider a switched capacitor integrator in Fig. 5. Assume the MOS switch has an on-resistance R, and $gm1$ is the transconductance of OTA. Let the output parasitic capacitor $C_p \approx \eta \cdot C$, where η is the parasitic percentage of bottom plate, assumed to be 20% [31]. In Fig. 5(a), the voltage V_S represents the difference between the sinusoidal input signal and the feedback signal from DAC. It is sampled by C_S. C_S is charged in the half clock period $\frac{T}{2}$ to the voltage V_{CS}:

$$V_{CS} = V_S \cdot (1 - \exp(-\frac{T}{2 \cdot \tau_1}))$$

where $\tau_1 = \frac{R}{C_S}$ is the time constant in the input branch.

So the setting error during the sampling phase is:

$$\epsilon_1 = V_S \cdot \exp(-\frac{T}{2 \cdot \tau_1})$$

(9)

In order to obtain settling noise power during the sampling phase from (9), we need to find the V_S statistical property. Simulations results (using SIMULINK) on a second-order $\Sigma\Delta$ modulator with $a_1 = 0.5$, $a_2 = 2$, 10-level quantization, reference voltage $V_{ref} = \pm 1V$, and a full scale sinusoidal input signal, are shown in Fig. 6. The result is close to a Gaussian distribution. Therefore, we assume V_S is Gaussian distributed with a zero mean. The standard deviations σ_{VS} of V_S under different quantizer levels are tabulated in Table I. We observed that when the quantizer level N increases, σ_{VS} decreases. From this table, the relation between standard deviation σ_{VS} and quantizer levels 2^n can be approximated by

$$2^n \cdot \sigma_{VS} \approx 1.4 \cdot V_{ref}$$

(10)

The settling noise can reasonably assumed to be white, and its power spectral density constant and distributed over $(-f_s/2, f_s/2)$ as

$$S_S = \frac{1}{f_s} \left(\frac{1.4 \cdot V_{ref}}{2^n} \right)^2 \exp\left(\frac{-T}{\tau_1}\right)$$

(11)

Due to oversampling, noise power can be obtained by
integrating (11) in the signal band \((-f_b,f_b)\), which is

\[
P_{sl} = \frac{1}{OSR} \left(\frac{1.4 \cdot V_{ref}}{2^a}\right)^2 \cdot \exp\left(-\frac{T}{\tau_1}\right)
\]

(12)

Next, we consider the integration phase shown in Fig.5 (b), where the \(2^a\) unit capacitors are combined into \(C_s\), and the \(2^a\) DAC switches are neglected. The charge stored in sampling capacitor will be added to the integration capacitor and this charge current is supplied by OTA. So when the slew rate and gain bandwidth are not large enough, the settling error \(\varepsilon_2\) will be produced. The statistical properties of \(V_s\) have been summarized in Table I. Then, according to Fig. 7, three types of settling conditions can happen in the integrator output during this phase, and the corresponding voltage errors of these three conditions are [14]

1. Linear settling: When the initial change rate of the integrator output voltage \((V_o)\) is smaller than the OTA slew rate \((SR)\),

\[
\varepsilon_2 = a_1 \cdot |V_s| \cdot \exp\left(\frac{T}{2 \cdot \tau_2}\right),
\]

when \(0 < V_s < \frac{1}{a_1} \cdot SR \cdot \tau_2 \)

(13)

2. Partial slewing: The initial change rate of \(V_o\) is larger than \(SR\), but it gradually decreases until it is below the slew rate,

\[
\varepsilon_2 = SR \cdot \tau_2 \cdot \exp\left(\frac{a_1 \cdot |V_s|}{SR \cdot \tau_2} \cdot \frac{T}{2 \cdot \tau_2} - 1\right),
\]

when \(\frac{1}{a_1} \cdot SR \cdot \tau_2 < |V_s| < (\frac{T}{2} + \tau_2) \cdot \frac{SR}{a_1} \)

(14)

3. Fully slewing: The initial change rate of \(V_o\) is larger than \(SR\), and it maintains above \(SR\) in the \(T/2\) interval.

\[
\varepsilon_2 = a_1 \cdot |V_s| - \frac{SR \cdot T}{2}
\]

when \(|V_s| > \frac{SR}{a_1} \cdot (\frac{T}{2} + \tau_2)\)

(15)

where \(SR\) is the slew rate of OTA, and \(\tau_r = \frac{1 + 2 \pi \cdot GBW \cdot R \cdot C}{2 \pi \cdot GBW}\) is the time constant in the integration phase, with \(GBW\) being the equivalent gain bandwidth in the integration phase. The capacitor loading in OTA output during this phase is heavier than in the sampling phase, and is [23]

\[
C_{\tau_r} = 2C_s + C_i \cdot \frac{C_i + (2C_s)}{C_i}
\]

(16)

the \(GBW\) is given by

\[
GBW = \frac{g_m}{C_{\tau_r} \cdot 2\pi}
\]

In order to estimate settling noise in this phase, we must analyze the occurrence probability for each of the three conditions defined by (13)-(15). The probability of \(V_s\) in the linear settling region is

\[
Pr_{lin} = \int_{0}^{\frac{V_s}{a_1} \cdot SR \cdot \tau_2} \frac{2}{\sqrt{2\pi} \sigma_{VS}} \exp\left(\frac{-V_s^2}{2 \cdot \sigma_{VS}^2}\right) dV_s
\]

\[
= \text{Erfc}\left[\frac{SR \cdot \tau_2}{\sqrt{2a_1 \sigma_{VS}}}\right]
\]

(18)

Let \(\varepsilon_{max}\) be the maximum linear settling error, and it can be obtained by substituting \(|V_s| = \frac{1}{a_1} \cdot SR \cdot \tau_2\) into equation (13). Since \(V_s\) is approximately Gaussian, it is reasonable to assume that the linear settling error in (13) also has a Gaussian distribution in \((-\varepsilon_{max},\varepsilon_{max})\). So the average linear settling noise power in the integration phase is approximately

\[
P_{lin} \approx \frac{\varepsilon_{max}^2}{9} = \frac{1}{9} \left(\frac{SR \cdot \tau_2 \exp\left(-\frac{T}{2 \cdot \tau_2}\right)}{\tau_2}\right)^2
\]

(19)

Before calculating the partial settling probability, we must check the possibility of this condition. If \(\frac{1}{a_1} \cdot SR \cdot \tau_2 \geq 2V_{ref}\), a partial and fully slewing condition does not need to be considered. If \(\frac{1}{a_1} \cdot SR \cdot \tau_2 < 2V_{ref}\), partial slewing probability is

\[
Pr_{par} = \text{Erfc}\left[\frac{SR(T + 2\tau_2)}{2\sqrt{2a_1 \sigma_{VS}}}\right] - \text{Erfc}\left[\frac{SR(\tau_2)}{2\sqrt{2a_1 \sigma_{VS}}}\right]
\]

(20)

Now we calculate noise power under the partial slewing condition. The pdf of \(V_s\) is

\[
f_{pdf}(V_s) = \frac{1}{Pr_{par}} \cdot \frac{2}{\sqrt{2\pi} \sigma_{VS}} \exp\left(\frac{-V_s^2}{2 \cdot \sigma_{VS}^2}\right)
\]

(21)

when \(\frac{1}{a_1} \cdot SR \cdot \tau_2 < |V_s| < (\frac{T}{2} + \tau_2) \cdot \frac{SR}{a_1}\).

The \(\varepsilon_2\) here is no longer Gaussian distributed, and its pdf

<table>
<thead>
<tr>
<th>Std. deviation ((\sigma_{VS}))</th>
<th>Variance</th>
<th>Quantizer level (N)</th>
<th>Bit number ((B))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.706</td>
<td>0.498</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>0.476</td>
<td>0.227</td>
<td>3</td>
<td>1.585</td>
</tr>
<tr>
<td>0.282</td>
<td>0.080</td>
<td>5</td>
<td>2.322</td>
</tr>
<tr>
<td>0.198</td>
<td>0.040</td>
<td>7</td>
<td>2.808</td>
</tr>
<tr>
<td>0.152</td>
<td>0.023</td>
<td>9</td>
<td>3.17</td>
</tr>
<tr>
<td>0.124</td>
<td>0.016</td>
<td>11</td>
<td>3.46</td>
</tr>
<tr>
<td>0.047</td>
<td>0.002</td>
<td>31</td>
<td>4.95</td>
</tr>
</tbody>
</table>

Table I: Standard deviations of \(V_s\) v.s. different quantizer bit numbers

Fig. 7: Three types of settling conditions in integration phase.
In order to verify the result in (28), we use SIMULINK to build a second-order $\Sigma \Delta$ modulator with a 4-bit quantizer. The behavioral settling model in [14] is used. We assume that $a_i = 0.5$, $R = 300 \Omega$, $C_s = 1.7 \text{ pF}$, $GBW = 100$ MHz, $f_p = 300$ kHz and $SR = 100$ V/μs, and use a 300 kHz sinusoidal input signal. In an ideal behavior simulation with a sinusoidal input, the error ε_2 cannot be observed at modulator output, because ε_2 is highly correlated with V_s, so that ε_2 is compensated in the steady state by the integrator. However, adding a small noise to the input signal can eliminate the effects of feedback and integration. The theoretical noise power is obtained by adding the theoretical settling noise power from (28) to the theoretical quantization noise power. The simulated and theoretical noise powers are both shown in Fig. 8 vs. OSR. The two lines are closely related. When $OSR < 50$, quantization noise dominates. When $OSR > 50$, settling noise dominates. Notice that increasing SR and GBW will reduce settling noise and increase SNR, but will also increase analog power consumption and the design challenges.

In conclusion, if ε_2 is independent of V_s, our settling noise model is correct and accurate. This model can be conservative if it is use in the design optimization discussed in Section III and IV, resulting in larger SR and GBW. However, the SR and GBW obtained from our design are still much smaller than those used in [5], as is discussed in Section IV. In addition, if we take into account the settling distortion issue (see Section IV and Appendix A), this conservativeness may be indeed needed.

C.1 Setting error of second stage

In integration phase, the settling error power for the second stage integrator is much smaller than that in the first stage, so generally it is not considered. This noise source appears at D2 in Fig. 10. The standard deviation of V_s for the second stage can be approximated by

$$\sigma_{V_s} = \frac{1.06 \cdot V_{os}}{2}$$

In general, the design specifications for the 1st and 2nd stage integrators are different, so the overall settling error power for the 2nd stage integrator $P_{\varepsilon_{2\text{nd}}(\text{overall})}$ can be obtained by substituting its specifications into (16)–(27). Due to noise shaping, the total noise power in signal
Multi-bit DAC noise

There are several advantages in using a multi-bit structure, which are discussed in [33, 34]. Due to CMOS process variations, there can be mismatches in the 2^n unit capacitors C_n of a B-bit DAC shown in Fig. 4. Assume that each unit capacitor distribution is Gaussian [35] around a nominal value. Let the normalized capacitance be

$$c_i = \frac{C_i}{2^n}, \quad 1 \leq i \leq 2^n$$

where C_i is the capacitance of the ith unit capacitor.

Define the deviation of c_i as $\epsilon_i = c_i - c_m$, where

$$c_m = \frac{\sum_{i=1}^{2^n} c_i}{2^n}$$

Then voltage error caused by unit capacitor mismatches is given by [23]

$$e_{dac}(k) = V_{ref}(\sum_{i=1}^{z(k)} e_i - \sum_{i=1}^{z} e_i)$$

where $z(k)$ represents the number of 1’s in the feedback thermometer code at the time step k. The $e_{dac}(k)$ can be treated as an additive Gaussian noise in the $\Sigma\Delta$ modulator feedback path, the variance of which is

$$\sigma^2[e_{dac}] = V_{ref}^2 \cdot \sigma^2[\epsilon] + (2^n - z(k)) \cdot \sigma^2[\epsilon]$$

where σ_{ϵ} is the standard deviation of unit capacitor.

Assuming the $e_{dac}(k)$ is also white, the average DAC noise power at the modulator output becomes

$$P_{dac} = \frac{1}{OSR} \cdot V_{ref}^2 \cdot 2^n \cdot \sigma_{\epsilon}^2$$

In order to reduce DAC error due to unit capacitor mismatch, several techniques have been proposed. The most efficient among these is the Data Weighted Averaging (DWA) [36], and it is shown in [37] that the DWA effect is a first-order noise shaping of the DAC noise. If the DWA is employed, the average DAC noise power at the modulator output is modified to be

$$P_{dac}(\text{DWA}) = V_{ref}^2 \cdot 2^n \cdot \sigma_{\epsilon}^2 \cdot \frac{\pi^2}{3 \cdot OSR}$$

Clock Jitter Effects

As both the signal bandwidth and the required output SNR increase, clock jitter problems become more obvious. Jitter is usually defined as a random variation in clock signal period around the ideal value, and the value of jitter can be reasonably assumed as a Gaussian random variable with zero mean and standard deviation σ_{jj}. If there is some variation in clock high time, the input signal will be sampled at the wrong instant and receive a consequent voltage error. For a sinusoidal input signal with maximum amplitude A_m and frequency f_{in}, if it is sampled by a clock which has a jitter variation, then the voltage error is [2]

$$\Delta V \cong 2\pi \cdot f_{in} \cdot A_m \cos(2\pi \cdot f_{in} \cdot t) \Delta T$$

where ΔT is the variation of clock period with standard deviation σ_{jj}. Then the jitter noise power becomes

$$P_{jitter} = \frac{(2\pi \cdot f_{in} \cdot A_m)^2 \cdot \sigma_{\text{jj}}^2}{2 \cdot OSR}$$

We consider the worst case in this work. That is, f_{in} and A_m are replaced by f_B and V_{ref} respectively. More discussions about tolerable σ_{jj} will be given in the next section.

We summarize the nonideality modeling as follows. The leakage noise due to finite OTA gain can be considered as an additional quantization noise, so the total quantization noise will be higher than theoretical quantization noise, appearing at D3 in Fig. 10. All other nonidealities in the first stage are modeled at D1 in Fig. 10, because we have modeled them as input-referred noise in the integrator input.

Relative Power Model

In order to understand how $\Sigma\Delta$ modulator power consumption is related to different circuit parameters, we must derive the power dissipation equation. Some derivations of this are based on the results presented in [23, 24, 25]. It is difficult to estimate real system level power consumption, so our goal is not to estimate the absolute value of the power, but to find how power changes with circuit parameters, it is called the relative power consumption. Typically, $\Sigma\Delta$ ADC power consumption is categorized into analog and digital parts. The power dissipation in the quantizer is also considered. We analyze
the analog part first. The analog power dissipation in a \(\Sigma\Delta\) modulator is mainly from OTA, and is proportional to the product of several parameters:

\[
P_{\text{ana}} = k_{\text{OTA}} \cdot V_{\text{DD}} \cdot \pi \cdot C_{L2} \cdot GBW
\]

where \(k_{\text{OTA}}\) is the number of current branches of OTA and \(V_{\text{DD}}\) is the power supply. The \(k_{\text{OTA}}\) depends on the topology of OTA. The first integrator is the most important in terms of noise. Hence, all succeeding integrators are normally scaled down progressively to reduce the power consumption and die area. Consider that the sum of the relative scaling factors used in all the integrators of the \(\Sigma\Delta\) is \(k_{\Sigma\Delta}\). Then the analog power consumption equals \(k_{\Sigma\Delta} \cdot \text{POW}_{\text{OTA}}, \) where \(k_{\Sigma\Delta}\) is proportional to the order \(n\) of the \(\Sigma\Delta\) modulator. Assuming that the scaling factor is 0.5, then from (39), the total analog power consumption is:

\[
P_{\text{ana}} \approx k_{\Sigma\Delta} \cdot \text{POW}_{\text{OTA}} \\
\sim \left(\sum_{i=0}^{n-1} (0.5)^i \right) \cdot k_{\text{OTA}} \cdot V_{\text{DD}} \cdot \pi \cdot C_{L2} \cdot GBW
\]

Since the analog power consumption is related to \(n\), \(V_{\text{DD}}\), \(C_{L2}\), and \(GBW\), they are important circuit parameters to be determined in the design flow.

Next, we discuss digital power consumption. Digital power consumption is mainly from MOS switch operation, and is proportional to the product of another set of parameters:

\[
P_{\text{digital}} \sim n \cdot 2^b \cdot C_{\text{Switch}} \cdot V_{\text{DD}}^2 \cdot 2 \cdot f_B \cdot \text{OSR}
\]

where \(2 \cdot f_B \cdot \text{OSR}\) is equal to the sampling frequency, and \(C_{\text{Switch}}\) is the total gate capacitance of switches. The value of \(C_{\text{Switch}}\) is inversely proportional to the switch-on resistance \(R\) [38], so we define the relative digital power as

\[
P_{\text{digital}} \sim n \cdot 2^b \cdot \frac{1}{R} \cdot V_{\text{DD}}^2 \cdot f_B
\]

Next we discuss quantizer power consumption. In the multi-bit ADC, a simple power estimation formula for Nyquist ADC [25] is

\[
p_{\text{quantizer}} = \frac{V_{\text{DD}}^2 \cdot L_{\text{max}} \cdot (f_y + f_s)}{10^{n \cdot 2^{n-1} \cdot \text{OSR}}}
\]

where \(L_{\text{max}}\) is the maximum channel length of the technology associated. According to the above discussion, the total relative power is defined as

\[
\text{Power} = K_1 \times \text{POW}_{\text{ana}} + K_2 \times \text{POW}_{\text{digital}} + P_{\text{quantizer}}
\]

where \(K_1\) and \(K_2\) are adjusted to make \(\text{Power}\) in (mW) comparable in magnitude with real power dissipations. After comparing with power measurements reported in [5, 11], we set \(K_1 = 0.03651\) and \(K_2 = 3.6877 \times 10^{-10}\). Both [5] and [11] are based on 0.18-\(\mu\)m CMOS technology. For other CMOS technologies, the \(K_1\) and \(K_2\) may be set to other appropriate values.

Dynamic element matching (DEM) [36, 37, 47] is based on scrambling the use of the unit elements in a multi-bit DAC to average out nonlinearity and turn distortion into noise. In general, the DEM logic grows exponentially in complexity, size, and power dissipation as the internal quantizer bit increases. And the power consumption of 120DEM depends on CMOS technology. Due to many possible variations in DEM designs, we do not try to calculate the power consumption for any specific type of DEM scheme. Instead, picking a medium value, we assume DEM power is \(0.6 \times \text{Power}\) if DEM is employed.

III. The Design Optimization Scheme

Power and nonideality models derived in section II are employed to propose a design optimization algorithm, to search for optimal parameter combinations. Before the discussions, we formally define the peak \(\text{SNR}\) at \(\Sigma\Delta\) ADC output as

\[
\text{SNR} = \frac{(2\Delta_n)^2}{2} \left\langle \frac{P_0 + P_{AV} + P_s + P_{\text{str}} + P_{\text{iter}} + P_{\text{ref}} + P_{\text{OTA}} + P_{\text{ref}}}{P_0 + P_{AV} + P_s + P_{\text{str}} + P_{\text{iter}} + P_{\text{ref}} + P_{\text{OTA}} + P_{\text{ref}}}
ight\rangle
\]

Table II summarizes the facts from models in section II. Table II shows qualitatively how noise and power are affected when a particular design parameter increases, and it reveals that the \(\Sigma\Delta\) ADC design task is very complex. Basically we identify \(B\), \(\text{OSR}\), \(n\), \(R\), \(GBW\), \(C_5\) and \(SR\) as the optimization process design parameters.

In the following we propose an design optimization algorithm to help designers reach an optimal design quickly. It is based on the error and power models described in section II. The complete flow of the

<table>
<thead>
<tr>
<th>Parameter Set</th>
<th>(B)</th>
<th>(\text{OSR})</th>
<th>(n)</th>
<th>(R)</th>
<th>(GBW)</th>
<th>(C_5)</th>
<th>(SR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_0 (1))</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P_{AV} (1))</td>
<td>↓</td>
<td>↓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P_s (12))</td>
<td>↑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P_{\text{str}} (28))</td>
<td>↓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P_{\text{iter}} (35))</td>
<td>↓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P_{\text{ref}} (38))</td>
<td>↓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P_{\text{OTA}} (2))</td>
<td>↓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P_{\text{ref}} (6))</td>
<td>↓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P_{\text{ref}} (7))</td>
<td>↓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{Power} (44))</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 11 Proposed optimization algorithm for the \(\Sigma\Delta\) modulator design

Table II Summary of noise-power and power-rating variations when design parameters increase
optimization methodology is shown in Fig. 11. The input signal bandwidth (Hz) and the output signal SNR (dB) are treated as design specifications. We modify the figure-of-merit (FOM) [40] function by multiplying a variable K to the SNR term of FOM, to become our weighting function.

$$WF = K \cdot SNR_{db} + 10\log \left(\frac{f_B}{\text{Power}} \right)$$ (46)

The design optimization algorithm basically searches through the entire parameter space to find the set of design parameters which maximize the Weighting Function. By maximizing the Weighting Function we can increase SNR (45) and reduce $Power$ (44) at the same time.

The constant K serves as the relative weighting between SNR and $Power$. Typically, if we prefer high resolution designs, we set K higher and SNR plays a more important role than $Power$; on the other hand, if we prefer low power designs, we can set K lower. After an design optimization process, the set of design parameters resulting in the largest Weighting Function value is the outcome and is evaluated. If not acceptable, the K is adjusted and the design optimization process is repeated. The parameter searching space is specified to be

- $OSR : 8 ~ 128$
- $B : 1 \sim 6 \ (if > 3, \ DEM \ is \ required)$
- $n : 1 \sim 3$
- $R : 100 \Omega \sim 300 \Omega$
- $GBW : 50 \text{ MHz} \sim 500 \text{ MHz}$
- $SR : 50^V/\mu s \sim 500^V/\mu s$
- $C_i : 1 \text{ pF} \sim 10 \text{ pF}$

The parameters σ_{cap} and V_{ref} depend on the technology, so they are set before the design optimization. The tolerable value of jitter standard deviation σ_{jit} can be specified after the optimization process. During the design optimization process, the gain coefficients α_i are specified according to the rules provided in [43].

IV. SIMULATION RESULTS

In order to demonstrate the accuracy and practicability of our method, we apply it to two published design cases [5, 28]. In addition, we compare our method with existing behavior-simulation-based optimization schemes [48, 49].

A. ΣΔ ADC for ADSL-CO Applications

To compare with the design of [5], the design optimization algorithm uses the same specifications as those in [5]. They are:

- Peak $SNR : 82$ dB
- Signal bandwidth : 276 kHz

The OTA gain A is set at 60 dB and the V_{ref} is set at 0.9 V for a 1.8 V power supply in 0.18-μm CMOS technology. The matching of capacitor σ_{cap} is set at 0.04% for the MIM capacitance. The results published in [5] and those obtained from our methodology are all listed in Table III, which includes three design optimization results corresponding to $K=0.3$, $K=0.6$, and $K=0.7$. From

<table>
<thead>
<tr>
<th>Circuit parameters</th>
<th>in [5]</th>
<th>$K=0.3$</th>
<th>$K=0.6$</th>
<th>$K=0.7$</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSR</td>
<td>96</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>n</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>R</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>Ω</td>
</tr>
<tr>
<td>C_i</td>
<td>1.7</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>μF</td>
</tr>
<tr>
<td>C_{i2}</td>
<td>7.2</td>
<td>5.8</td>
<td>5.8</td>
<td>7.8</td>
<td>μF</td>
</tr>
<tr>
<td>GBW</td>
<td>400</td>
<td>70</td>
<td>90</td>
<td>150</td>
<td>MHz</td>
</tr>
<tr>
<td>SR</td>
<td>500</td>
<td>120</td>
<td>160</td>
<td>50</td>
<td>$V/\mu s$</td>
</tr>
<tr>
<td>σ_{jit}</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>Ps</td>
</tr>
<tr>
<td>SNR</td>
<td>82.8</td>
<td>81.5</td>
<td>83.3</td>
<td>96.7</td>
<td>dB</td>
</tr>
<tr>
<td>SNR (SIMULINK)</td>
<td>82.3</td>
<td>80.8</td>
<td>83.1</td>
<td>95.5</td>
<td>dB</td>
</tr>
<tr>
<td>$Power$</td>
<td>15</td>
<td>3.0</td>
<td>3.7</td>
<td>26.2</td>
<td>mW</td>
</tr>
</tbody>
</table>

TABLE III Comparisons of our design results with those in [5]

<table>
<thead>
<tr>
<th>Noise</th>
<th>in [5]</th>
<th>$K=0.3$</th>
<th>$K=0.6$</th>
<th>$K=0.7$</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_0</td>
<td>-109.8 dB</td>
<td>-84.9 dB</td>
<td>-89.8 dB</td>
<td>-105.8 dB</td>
</tr>
<tr>
<td>P_{ref}</td>
<td>-141.1 dB</td>
<td>-123.6 dB</td>
<td>-126.5 dB</td>
<td>-141.0 dB</td>
</tr>
<tr>
<td>P_{av}</td>
<td>-196.5 dB</td>
<td>-681.7 dB</td>
<td>-551.5 dB</td>
<td>-258.4 dB</td>
</tr>
<tr>
<td>P_{σ}</td>
<td>-1193.3 dB</td>
<td>-103.9 dB</td>
<td>-104.5 dB</td>
<td>-120.0 dB</td>
</tr>
<tr>
<td>P_{sw}</td>
<td>-96.9 dB</td>
<td>-90.8 dB</td>
<td>-91.8 dB</td>
<td>-95.6 dB</td>
</tr>
<tr>
<td>P_{ref}</td>
<td>-114.7 dB</td>
<td>-101.0 dB</td>
<td>-103.1 dB</td>
<td>-109.1 dB</td>
</tr>
<tr>
<td>P_{OTA}</td>
<td>-117.0 dB</td>
<td>-110.9 dB</td>
<td>-111.9 dB</td>
<td>-115.7 dB</td>
</tr>
<tr>
<td>P_{dc}</td>
<td>-80.8 dB</td>
<td>-81.4 dB</td>
<td>-82.3 dB</td>
<td>-105.6 dB</td>
</tr>
<tr>
<td>P_{total}</td>
<td>-80.7 dB</td>
<td>-79.4 dB</td>
<td>-81.2 dB</td>
<td>-94.6 dB</td>
</tr>
</tbody>
</table>

TABLE IV The corresponding noise powers for the design parameters listed in Table III

POW_{analog}	64.6	6.65	8.55	28.5	-
$POW_{digital}$	3.1×10^{10}	6.4×10^9	8.02×10^9	3.85×10^{10}	-
$POW_{quantizer}$	1.29	0.38	0.48	1.15	mW

TABLE V List of the details of power consumption

Table III, when $K=0.6$, the result of $SNR = 83.3$ dB satisfies the specification, although the $Power = 3.7 \text{ mW}$ is higher than $Power = 3.0 \text{ mW}$ when $K=0.3$. The results from higher K are also reported. When $K=0.7$, the power consumption is dramatically larger at 26.2 mW, due to the fact that the DEM is employed and B is larger. We choose the case $K=0.6$ (with $SNR=83.3$) as our design. The SNR generated from the SIMULINK behavior simulation is also included in Table III.

The design of [5] is also listed in Table III. The SNR and $Power$ of [5] listed in Table III are computed from our models. The SR and GBW used in [5] are considerably larger than those of our design. According to Table VIII in the Appendix A, the values $SR = 500^V/\mu s$ and $GBW = 400 \text{ MHz}$ are barely enough for $OSR = 8$, but are more than adequate for $OSR = 16$. Since the OSR in [5] is designed to be 96, the SR and GBW values used in [5] are too large...
the minimum required values at $SR = 90 V / \mu s$ and $GBW = 40MHz$ listed in Table VIII, resulting in power consumption four times that of our design (15mW vs. 3.7mW). The SR and GBW in our design are adequate, with $(SR, GBW) = (160, 90)$ compared with the minimum required (110, 60) listed in Table VIII.

Table IV shows the corresponding noise powers for the four design cases shown in Table III. In the design of [5], and in our designs for $K=0.6$, the dominating noise power is P_{dac}. Our optimization process may help to distribute noise power more evenly among different noise categories, resulting in a larger gap between P_{dac} and P_{total}, where P_{total} is the sum of in band noise powers. The gap between P_{dac} and P_{total} from [5] is very small. Our optimization algorithm also helps designers consider less aggressive design parameters first, e.g., setting $B=2$ instead of 3. When $K=0.7$, the optimization algorithm sets B to be 4, so the DEM technique is employed, and DAC noise is suppressed to -105.6 dB. Accordingly the P_{in} at -95.6 dB becomes the dominating noise power. Finally, we want to report a case not listed in Tables III and IV. Suppose we change our rule to enable DEM when B is equal to or larger than 3. Then, for the case $K=0.6$, the algorithm sets B to be 3 (from 2). P_{dac} is reduced to -111.2 dB (from -82.3 dB), and SNR is raised to 97.2 dB (from 83.3 dB). But the power consumption is increased to 16.9 mW (from 3.7 mW).

Table V lists the power consumption details. From (38), we can see that the P_{power} is proportional to the GBW and C_{L2} The C_{L2} is proportional to the sampling capacitance C_s. From Table III, we can see that the GBW of [5] is larger than that of $K=0.3$, $K=0.6$ and $K=0.7$ and C_s of [5] is larger than that of $K=0.3$ and $K=0.6$ (almost the same with $K=0.7$). Hence, the P_{power} of [5] is the largest among the four cases. From (40), we can see that the P_{power} is proportional to the 2^R and OSR. It is also inversely proportional to the on-resistance R. The quantizer power P_{power} (41) is related to OSR and B. The larger the OSR and B are, the larger the quantizer power P_{power}. In Table III the $Power$ of [5] is four times larger compared with that of $K=0.6$. This is due to the design of [5] employs larger GBW, OSR, C_s, and B, resulting in larger P_{power}, P_{power} and P_{power}.

B. $\Sigma \Delta$ ADC for Broadband Applications

To compare with the design of [28], the design optimization algorithm uses the same specifications as those in [28]. They are:

- Peak SNR: 95 dB
- Signal bandwidth: 1.25 MHz

The DAC architecture in [28] (shown in Fig. 12) is different from the one shown in Fig. 1. Therefore, the noise powers P_{sw}, P_{OTA} and P_{x1} must be modified, and

![Fig. 12 The DAC architecture in [28]](image)

<table>
<thead>
<tr>
<th>circuit parameters</th>
<th>[28]</th>
<th>$K=0.3$</th>
<th>$K=0.6$</th>
<th>$K=1$</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSR</td>
<td>24</td>
<td>20</td>
<td>28</td>
<td>40</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>n</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>R</td>
<td>220</td>
<td>300</td>
<td>300</td>
<td>200</td>
<td>Ω</td>
</tr>
<tr>
<td>C_s</td>
<td>200</td>
<td>225</td>
<td>225</td>
<td>300</td>
<td>Ω</td>
</tr>
<tr>
<td>C_{L2}</td>
<td>8.5</td>
<td>5</td>
<td>5</td>
<td>6.7</td>
<td>μF</td>
</tr>
<tr>
<td>GBW</td>
<td>220</td>
<td>120</td>
<td>240</td>
<td>400</td>
<td>MHz</td>
</tr>
<tr>
<td>SR</td>
<td>145</td>
<td>75</td>
<td>150</td>
<td>250</td>
<td>$V/\mu s$</td>
</tr>
<tr>
<td>σ_{int}</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>Ps</td>
</tr>
<tr>
<td>SNR</td>
<td>94.1</td>
<td>89.7</td>
<td>94.5</td>
<td>98</td>
<td>dB</td>
</tr>
<tr>
<td>$SNR(SIMULINK)$</td>
<td>94.6</td>
<td>90.3</td>
<td>95.8</td>
<td>99.1</td>
<td>dB</td>
</tr>
<tr>
<td>$Power$</td>
<td>300</td>
<td>118</td>
<td>167</td>
<td>303</td>
<td>mW</td>
</tr>
</tbody>
</table>

Comparisons of our design results with those in [28]

<table>
<thead>
<tr>
<th>Noise</th>
<th>in [28]</th>
<th>$K=0.3$</th>
<th>$K=0.7$</th>
<th>$K=1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_Q</td>
<td>-104 dB</td>
<td>-92.5 dB</td>
<td>-102.7 dB</td>
<td>-113.6 dB</td>
</tr>
<tr>
<td>P_{AV}</td>
<td>-170 dB</td>
<td>-160 dB</td>
<td>-168 dB</td>
<td>-175.7 dB</td>
</tr>
<tr>
<td>P_{x1}</td>
<td>-1680 dB</td>
<td>-1314 dB</td>
<td>-948 dB</td>
<td>-755 dB</td>
</tr>
<tr>
<td>P_{x2}</td>
<td>-101 dB</td>
<td>-94.8 dB</td>
<td>-104.2 dB</td>
<td>-104 dB</td>
</tr>
<tr>
<td>P_{sw}</td>
<td>-96.6 dB</td>
<td>-93.4 dB</td>
<td>-94.8 dB</td>
<td>-97.6 dB</td>
</tr>
<tr>
<td>P_{ref}</td>
<td>-100 dB</td>
<td>-93 dB</td>
<td>-97.4 dB</td>
<td>-102 dB</td>
</tr>
<tr>
<td>P_{OTA}</td>
<td>-119.3 dB</td>
<td>-116 dB</td>
<td>-117.5 dB</td>
<td>-120.3 dB</td>
</tr>
<tr>
<td>P_{dac}</td>
<td>-94.1 dB</td>
<td>-95.3 dB</td>
<td>-99.7 dB</td>
<td>-104 dB</td>
</tr>
<tr>
<td>P_{total}</td>
<td>-90.6 dB</td>
<td>-86.4 dB</td>
<td>-90.9 dB</td>
<td>-94.2 dB</td>
</tr>
</tbody>
</table>

The corresponding noise powers for the design parameters listed in Table VI the modifications are summarized in Appendix B. Other noise powers forms are the same as those in Sec. II, except that C_s is replaced by $2^R \cdot C_u$.

From TABLE VI, when $K=1$, $SNR=96$ dB satisfies the
specification in [28]. Compared with the design in Case A, several points are worth mentioning. Although our GBW and SR in Case A are much smaller than the published ones [5], they are larger than the published ones [28] in Case B. This helps to avoid the impression that our method produces extreme results. Table IV shows that the dominating noise power in Case A is P_{dm}, while Table VII shows that in Case B the dominating power is P_{m}. A reason is that the DEM is employed in Case B, but not in Case A.

C. Comparisons with Existing Optimization Schemes

Behavioral simulation based optimization strategy is popular for $\Sigma\Delta$ ADC design [48, 49]. The comparisons between our method and general behavioral simulation methods are summarized as follows.

1. Our method can be hundreds of times faster. We compare the CPU times required for each method to generate the SNR for a specific point in the parameter space (Measurement platform: Intel Pentium D, 2.8GHz CPU). To make a fair comparison, both methods are implemented under Matlab-Simulink environment. For our approach, the SNR in (45) is computed by a Matlab program (originally implemented in Mathematica). The CPU time is 62.5 ms. For behavior simulation approach, a 16384 point simulation is run under Simulink, and the total CPU time is 13.01 seconds. Our method is 208.2 times faster.

2. The optimization result from behavior simulations provides only the total noise power, while our method can generate each individual noise power as is listed in Table IV and Table VII, which provides greater insights and can serve several practical purposes. For example, suppose the design objective is not met even after the optimization process. The simulation approach might shed little clue about how things can be tackled. On the other hand, our result would indicate which noise power is the dominating one, and a different technology can be adopted to reduce that particular noise.

3. The disadvantage of our method is low flexibility, because equations may be modified every time when the topology is changed. In contrast, it is generally straightforward to simulate various $\Sigma\Delta$ modulator architectures by properly linking building blocks into appropriate forms.

V. CONCLUSION

The main contributions of this work are described in the following. First, a settling error model of the switched capacitor integrators in $\Sigma\Delta$ modulators is constructed using statistical analysis. This model considers settling errors in both the sampling and integration phases, represented in noise-power form. We also derive the DAC noise-power model. Additionally, we make modifications to existing noise-power models of other noises, particularly to thermal noise models. The noise-power models of all major noises and errors are established in Section II, and the SNR is defined in (45) accordingly. Second, based on nonideality models and the relative power model, we propose an optimization algorithm in Section III. In contrast to the complexity and difficulty encountered in the conventional $\Sigma\Delta$ modulator design approach, this algorithm can completely and efficiently search the entire design parameters space to find the parameter set which satisfies the specifications, while achieving the lowest power consumption. Third, the complete models allow for analytical evaluation of design results, whether they are generated from our algorithm or designed elsewhere. For example, information provided in Table IV and V can reveal which noise or power is the dominating factor. Fourth, our optimization method can be hundreds of times faster than existing behavioral simulation based approaches.

This paper works on optimization of SNR, not SNDR. For radio and communication applications, maximize SNDR becomes an important issue. We are currently working on creating a complete set of nonlinear distortion models, so that SNDR optimization can be realized.

APPENDIX A: Settling Distortion Model

In a $\Sigma\Delta$ modulator, nonlinear distortions can be categorized into op-amp gain nonlinearity distortion [18, 23, 46], settling distortion [18, 42, 46], nonlinear capacitances distortion [18, 23], quantizer nonlinearity distortion [34], nonlinear switch resistance distortion [23, 32] and DAC distortion [34, 37, 44, 45]. It can be verified that settling distortion is the sole distortion which can be significantly affected by op-amp slew rate (SR) and gain-bandwidth (GBW). There was a great effort in [46] to model settling distortion. However the result in [46] reached a wrong conclusion, and it showed little insight about how SR and GBW are quantitatively related to settling distortion. In this appendix, we provide a comprehensive model for settling distortion. This model is used in section IV to explain why the SR and GBW in [5] are too large, but the SR and GBW obtained in our design are adequate.

Consider the integrator operates in the integration phase. As discussed in section II, there are three settling conditions depending on the absolute value of V_s.

1. Linear setting $\left| V_s \right| < \frac{1}{a_i} \cdot SR \cdot \tau_s$.

 We can represent integrator output voltage during the nth integration interval as

 $V_s(t) = V_s(nT - T) + a_i V_s(1 - e^{-\frac{-t}{\tau_s}}), \quad nT - \frac{T}{2} < t < nT$ \hspace{1cm} (47)

2. Partial slewing $\left| V_s \right| \geq \frac{1}{a_i} \cdot SR \cdot \tau_s$.

 We can represent integrator output voltage during the nth integration interval as

 $V_s(t) = V_s(nT - T) + SR \cdot (t_0 - nT + \frac{T}{2})$

 $+ \left[a_i V_s - SR \cdot (t_0 - nT + \frac{T}{2}) \right] (1 - e^{-\frac{t - t_0}{\tau_s}}), \quad t > t_0$ \hspace{1cm} (48)

 where t_0 is the time instant when V_s rate becomes less than SR. The full slewing case is not considered here.
because it is not significant. Note that (47) and (48) at end of each integration interval can be rewritten as
\[
V_c(nT) = V_c(nT - T) + a_1 V_s(1 - e^{-\frac{1}{T_i}}),
\]
and setting
\[
V_x = \beta e^{\frac{x}{V_s}},
\]
we obtain
\[
V_x = \beta e^{\frac{x}{V_s}}.
\]
Let
\[
g(V_c) = \frac{a_1 (1 - \beta e^{\frac{x}{V_s}})}{V_c}.
\]
which is the integrator gain. Assume that \(g(V) \) can be approximated by
\[
p(v) = a_1 (1 - \alpha v + \alpha_2 v^2 + \alpha_3 v^3)
\]
We use the least square method to determine the coefficients \(\alpha_1, \alpha_2 \), and \(\alpha_3 \) such that the cost function
\[
q = \sum_{i=1}^{n} [g(x_i) - p(x_i)]^2
\]
is minimized over a specific interval, and the solution is found to be
\[
\begin{bmatrix}
\alpha_1 \\
\alpha_2 \\
\alpha_3
\end{bmatrix} = \begin{bmatrix}
225 \\
-525 \\
32 V_s
\end{bmatrix} \begin{bmatrix}
945 \\
64 V_s \\
96 V_s
\end{bmatrix} \begin{bmatrix}
10^{-1} (1 - \beta e^{\frac{x}{V_s}}) \\
10^{-2} \beta e^{\frac{x}{V_s}} \\
10^{-3} \beta e^{\frac{x}{V_s}}
\end{bmatrix}
\]
where \(V_s \) is the distribution range of the first integrator input \(V_s \). The amplitudes of the third and fifth harmonics of the modulator output are:
\[
A_3 = \frac{\alpha_1 |A_{3y}|}{4}; \quad A_5 = \frac{\alpha_3 |A_{5y}|}{4}
\]
where \(A_{3y} \) is the amplitude of \(V_{3y} \). However, in [46], \(A_{3y} \) instead of \(A_{3y} \) is employed in (54), where \(A_{3y} \) is the amplitude of a sinusoidal modulator input signal. It is intuitively clear that using \(A_{3y} \) is not correct, and our simulation shows that (54) is correct and precise. Next we are to obtain an expression for \(A_{3y} \).
\[
V_3(z) = X(z) - Y(z)
\]
In a second-order \(\Sigma \Delta \) modulator, modulator output signal \(Y(z) \) is the time delay version of \(X(z) \) plus high-pass filtered (noise shaped) quantization noise \(E(z) \). Therefore,
\[
Y(z) = z^{-2} X(z) + (1 - z^{-1})^2 E(z)
\]
Combining (55) and (56), \(V_3(z) \) can be written as
\[
V_3(z) = X(z) [-1 - z^{-2}] - (1 - z^{-1})^2 E(z)
\]
Ignoring the quantization noise and taking the inverse z-transform, one obtains
\[
V_3(t) = x(t) - x(t - 2T) u(t - 2T)
\]
\[
= A_w \sin(\omega t - A_w \sin(\omega t - 2T)) - u(t - 2T)
\]
Then, the amplitude of \(V_3(t) \) can be obtained as
\[
A_{3y} = V_3(2T) = A_w \sin(\omega \cdot 2T) \pm 2 A_w \omega \cdot T
\]
Note that \(A_{3y} \) is not related to quantizer bit number \(B \) which can only affect the level of noise floor \(E(\omega) \). The result (59) has been verified by behavior simulation under different \(B \) values.
In order to verify the result in (54), we use SIMULINK to build a second-order \(\Sigma \Delta \) modulator with a multi-bit quantizer. The behavioral setting model in [14] is employed. We assume that \(SR = 70 \sqrt{OSR} \cdot \text{GBW} = 100MHz, \), \(R = 300\Omega, \text{OSR} = 16, f_s = 1MHz \) and \(C_s = 2\mu F, \) and a 1MHz sinusoidal input signal is used. After performing FFT to the output data of the \(\Sigma \Delta \) modulator, we obtain the simulated PSD (Power Spectrum Density) which is shown in Fig. 13. It shows that HD3 is -112.5dB and HD5 is -117.5dB. The theoretical harmonic powers calculated from (53) and (54) are HD3 = -112.4dB and HD5 = -117.3dB. The simulated and theoretical results are very close, and this confirms that our settling distortion model is reasonably precise.
In order to provide insight on how settling distortions are related to circuit and system parameters, we further analyze the 3rd and 5th harmonic powers as follows:
\[
HD3(dB) = 20 \log \left(\frac{1}{\sqrt{2}} \left(\frac{\alpha_1 |A_{3y}|}{4} \right) \right)
\]
\[
= 20 \log |\alpha_1| - 60 \log \text{OSR} + 30.095
\]
\[
HD5(dB) = 20 \log |\alpha_3| - 100 \log \text{OSR} + 48.15
\]
From (60), we can see that \(\text{OSR} \) can effectively influence settling harmonic powers. The (53) reveals that \(\alpha_1 \) and \(\alpha_3 \) are functions of \(T, \text{GBW}, R, C_s \) and \(SR \). Using the parameters designed in Section IV with \(f_s = 50MHz), R = 300ohm, C_s = 2\mu F, \) and setting \(\text{GBW} \) and \(\text{SR} \) at \(\text{GBW} = 250MHz \) and \(\text{SR} = 250 \sqrt{\text{OSR} \cdot \text{GBW}} \), we plot \(20 \log |\alpha_1| \) vs. \(\text{SR} \) in Fig. 14 and \(20 \log |\alpha_3| \) vs. \(\text{GBW} \) in
in sampling phase is

\[Q = N_p \cdot [(V_u - (V_{in} - V_f)) \cdot e^{-\frac{7}{2RC}} + N_s \cdot (V_{in} - (V_{in} + V_f)) \cdot e^{-\frac{7}{2RC}}] \cdot C_u \]

where \(N_p \) and \(N_s \) represents the number of unit capacitors connected to \(V_f \) and \(-V_f \) respectively, and \(N_p + N_s = 2^b \). The (61) can be simplified to

\[Q = [V_{in} + V_f \cdot e^{-\frac{7}{2RC}}] \cdot 2^b \cdot C_u \]

where \(V_f = \frac{(N_p - N_s)}{2^b} \cdot V_f, \) so the settling error during the sampling phase is \(\epsilon_s = V_f \cdot e^{-\frac{7}{2RC}} \). The noise power can be easily derived as:

\[P_{\epsilon_s} = \frac{1}{OSR} \cdot \left(\frac{1.4 \cdot V_{ref}}{2^b} \right)^2 \cdot e^{-\frac{7}{2RC}} \]

Since \(C_u \) is much smaller than \(C_s \), the settling error during the sampling phase in (61) is much smaller than that in (12). If \(B \) is high enough, \(P_{\epsilon_s} \) can even be neglected.

2. \(P_{sw} \)

The integrator and the feedback DAC are combined by splitting up \(C_s \) in [5] into \(2^b \) parallel unity capacitors \(C_u \), so the KT/C noise from input branch in Fig.1 can be excluded, and the total noise power become half that of (2), which is:

\[P_{sw} \approx \frac{1}{OSR} \left(\frac{4KT}{C_s} \right) \]

Here an assumption for (62) is \(C_s = 2^b \cdot C_u \).

3. \(P_{OTA} \)

Equation (4) is modified to become

\[\frac{V_{in}(s)}{V_{ref}(s)} \approx \frac{\frac{a_1 + sC_u R}{1 + sC_u R}}{\left(1 + \frac{s}{GBW_A} \right)} \]

The noise power still can be obtained from (6), with (4) replaced by (65).

REFERENCES

