標題: 混合式火箭前瞻推進次系統發展及空氣動力優化研究與發展
Development of an Advanced Propulsion Subsystem and Aerodynamics Optimization for a Hybrid Rocket
作者: 吳宗信
WU JONG-SHINN
國立交通大學機械工程學系(所)
公開日期: 2011
摘要: è¿‘年來,混å�ˆå¼�ç�«ç®­çš„研究已經在世界å�„地的引起極大的關注。主è¦�是因為它具有高度安全性, 綠色推進特性和良好的比è¡�值(例如,N2O å�ŠHTPB 組å�ˆ:~250),因此其研發æˆ�本與其它如固態或液態 ç�«ç®­æŽ¨é€²æ–¹å¼�相å°�低廉許多。å�Œæ™‚,固態或液態ç�«ç®­æŽ¨é€²æ–¹å¼�在技術上亦相å°�æˆ�熟。這使得é�ŽåŽ»å��å¹´ 中ç�«ç®­ç ”究領域產生一個極大的典範轉移(paradigm shift)。比如,世界上幾個著å��的大學開始集中精 力開發他們自己具有特色的混å�ˆå¼�ç�«ç®­ç³»çµ±(hybrid rocket system),而é�žå¦‚é�ŽåŽ»ä¸€æ¨£åƒ…集中在零件級型 (component-level)的學術研究。ä¸�é�Žï¼Œå…¶ä¸­æ··å�ˆå¼�推進次系統ä»�然是最é‡�è¦�的次系統之一,因其優劣直 接決定ç�«ç®­å¤§éƒ¨ä»½çš„性能。在此計畫中我們é�¸æ“‡äº†å•†æ¥­ä¸Šæ˜“å�–å¾—çš„N2O 與HTPB 分別當作氧化劑與 燃料。此外,空氣動力的優化與ç�«ç®­é£›è¡Œè»Œè·¡é �測å°�一個ç�«ç®­ç³»çµ±ç™¼å±•æ˜¯ä¸€æ¨£é‡�è¦�的。因此,我們æ�� 出的三年å­�計畫中有三個主è¦�的目標,其中包括:1)é…�å�ˆç™¼å±•æ··å�ˆå¼�ç�«ç®­ç³»çµ±æ‰€æ��出的整å�ˆåž‹è¨ˆåŠƒ: å‰� 瞻多功能混å�ˆå¼�ç�«ç®­ç³»çµ±ç ”究與發,進行發展任務需求的混å�ˆå¼�推進次系統; 2)藉由模擬與實驗é‡�å°�ç�« 箭推進與空氣動力進行研究探討數個é‡�è¦�çš„å��應與é�žå��應æµ�å ´å•�é¡Œ;3)進行數個å°�æ··å�ˆå¼�ç�«ç®­ç³»çµ±ç™¼ 展相當é‡�è¦�的跨領域研究。總之,我們æ��出以下為期三年的研究計劃: â—� 第一年  完æˆ�具推力控制且推力大於300 kgf æ··å�ˆå¼�ç�«ç®­æŽ¨é€²æ¬¡ç³»çµ±(å…§å�«æ··å�ˆå¢žå¼·å™¨ã€�單節與單æµ�é�“ 設計)。  é€�é�Žå¹³è¡Œ3D 計算æµ�體力學進行模擬混å�ˆå¼�燃燒å¼�因渦旋群集增強器所造æˆ�複雜å��應æµ�ç�¾è±¡ 與推力增強,並以地é�¢æŽ¨åŠ›æ¸¬è©¦é€²è¡Œé©—證。  利用CFD 模擬進行é �測在縮å°�模型LITVC system 中複雜的暫態ç�¾è±¡ã€‚  與å�¦å­�計畫三(avionics and flight control subsystems)利用地é�¢æ¸¬è©¦é€²è¡Œç¯€æµ�閥控制推力的暫 態響應實驗。  利用component building up model 來建立具尾翼çµ�構(單節設計ç�«ç®­)的氣動力學資料庫。 â—�第二年 :  完æˆ�具推力控制且推力大於500 kgf æ··å�ˆå¼�ç�«ç®­æŽ¨é€²æ¬¡ç³»çµ±(å…§å�«æ··å�ˆå¢žå¼·å™¨ã€�單節與單æµ�é�“ 設計)。  æŒ�續並深入é€�é�Žå¹³è¡Œ3D 計算æµ�體力學進行模擬因渦旋群集增強器所造æˆ�複雜å��應æµ�ç�¾è±¡èˆ‡ 推力增強, 並以地é�¢æŽ¨åŠ›æ¸¬è©¦é€²è¡Œé©—證。  利用CFD 模擬進行é �測在全尺寸LITVC system 中複雜的暫態ç�¾è±¡ã€‚  進行地é�¢æ¸¬è©¦ï¼Œä¾†é©—證第一年縮å°�模型LITVC 之模擬çµ�果。  進行hybrid 空氣動力學設計(單節設計)ã€�翼身èž�å�ˆçš„çµ�構設計(雙節設計)和利用CFD 模 擬來研究å‰�翼/後翼之間æµ�場相互干涉影響。 â—�第三年 :  完æˆ�具推力控制且推力大於1000 kgf æ··å�ˆå¼�ç�«ç®­æŽ¨é€²æ¬¡ç³»çµ±(å…§å�«æ··å�ˆå¢žå¼·å™¨ã€�單節與單æµ�é�“ 設計)。第二節推力還待確定。  藉由地é�¢æ¸¬è©¦ä¾†é©—證全尺寸的LITVC system(因安全考é‡�,將無真正的飛行測試)。  進行CFD 模擬兩節å¼�ç�«ç®­åˆ†é›¢æƒ…形且建議第二節的點ç�«ç¨‹åº�
Recently, hybrid rocket research has attracted tremendous attention for several research institutes around the world, mainly because of its inherited high degree of safety, simplicity, green propulsion and good ISP, which results in relatively low development cost. Also, the technology is more or less matured in solid and liquid propulsion. This causes a clear paradigm shift in rocket research community. Several well-known universities began to focus on developing their own hybrid rocket systems, instead of solely focusing on component-level type research. Nevertheless, the hybrid propulsion subsystem is still one of the most important subsystems, which determines the rocket’s performance in general. Since nitrous oxide is self-pressurized, unlike LOX or others that requires complicated cryogenic pumping system, we have chosen commercially available nitrous oxide and HTPB as the oxidizer and fuel, respectively, in the proposed study. In addition, aerodynamics optimization of a rocket and 6-DOF flight trajectory prediction are both important subjects for a successful rocket system development, which will be addressed in this proposed subproject. Thus, we would like to propose a 3-year sub-project with three major objectives, which include: 1) to support the hybrid propulsion subsystem development as proposed in the integrated project, entitled “Development of an Advanced Multifunctional Hybrid Rocket�, 2) to explore several important fundamental reacting/non-reacting flow problems associated with hybrid rocket propulsion/aerodynamics through simulations and/or experiments, and 3) to conduct several inter-disciplinary researches that are critical to a success of the mission. In summary, we would like propose the following tasks in the 3-year period: � In the 1st year:  To deliver a single-stage, single-port hybrid propulsion subsystem with a mixing enhancer for real flight test with thrust >300 kgf and thrust control.  To explore the complex reacting flow phenomena caused by the vortex clustering mixing enhancer through parallel 3D CFD simulations and to compare with ground thrust experiments.  To explore the complex transient phenomena in a model LITVC system by CFD simulations.  To understand the transient response of thrust control through valve throttling by ground experiments by collaborating with Subproject III (avionics and flight control).  To build up the aerodynamics database for fin-body configuration (single stage) using component building up model. � In the 2nd year:  To deliver a single-stage, single-port hybrid propulsion subsystem with a mixing enhancer for real flight test with thrust >500 kgf and thrust control.  To further explore the complex reacting flow phenomena of proposed the vortex clustering mixing enhancer through parallel 3D CFD simulations and to compare with ground thrust experiments.  To understand the complex transient phenomena in a full-scale LITVC system by CFD simulations.  To conduct ground tests to validate the simulations of model LITVC system in the 1st year.  To conduct hybrid aerodynamics design (single-stage), wing-body-fin configuration design (two-stage) and CFD simulations to study the interaction between wings and fins. � In the 3rd year:  To deliver a two-stage single-port hybrid propulsion subsystem with a mixing enhancer for real flight test with thrust >1000 kgf for the 1st stage and thrust control, while the thrust of the 2nd leaves TBD.  To validate full-scale LITVC system by ground tests (no real-flight test because of safety concern).  To conduct CFD flow simulations of stage separation for the two-stage rocket and to recommend the ignition sequence of the second stage.
官方說明文件#: NSC99-2221-E009-056-MY2
URI: http://hdl.handle.net/11536/98908
https://www.grb.gov.tw/search/planDetail?id=2208146&docId=352558
顯示於類別:研究計畫


文件中的檔案:

  1. 992221E009056MY2(第2年).PDF