Full metadata record
DC FieldValueLanguage
dc.contributor.author黃大原en_US
dc.contributor.authorHUANG TAYUANen_US
dc.date.accessioned2014-12-13T10:38:15Z-
dc.date.available2014-12-13T10:38:15Z-
dc.date.issued1998en_US
dc.identifier.govdocNSC87-2115-M009-008zh_TW
dc.identifier.urihttp://hdl.handle.net/11536/95160-
dc.identifier.urihttps://www.grb.gov.tw/search/planDetail?id=360156&docId=64452en_US
dc.description.abstract由於對矩陣的一般乘積,Hadamard乘積及共軛轉置具有封閉性的緣故,Bose-Mesner代數(或稱為齊性協同代數)可為一些組合結構提供稱為"結合方案"的共同架構。Bose-Mesner代數在擬對稱設計及部份平衡區組設計裡所扮演的角色,充分顯示凡與其轉置相乘後落於Bose-Mesner代數的複數矩陣,通常提供了具有代數特色的組合結構,值得深入探討。本計劃擬從這個角度,以與統計力學有密切關聯的"四重旋量模型",及可視為強正則圖形的一種推廣的"Deza圖形"作為本研究計劃的重點。zh_TW
dc.description.sponsorship行政院國家科學委員會zh_TW
dc.language.isozh_TWen_US
dc.subjectBose-Mesner代數zh_TW
dc.subject結合架構zh_TW
dc.subject齊次同調代數zh_TW
dc.subject擬對稱設計zh_TW
dc.subject部分區組設計zh_TW
dc.subjectDeza圖形zh_TW
dc.subject四重旋量模型zh_TW
dc.subjectBose-Mesner algebra (BM algebra)en_US
dc.subjectAssociation schemeen_US
dc.subjectHomogeneous coherent algebraen_US
dc.subjectQuasi symmetric designen_US
dc.subjectPartially balance incomplete block designen_US
dc.subjectDeza graphen_US
dc.subjectFour weight spin modelen_US
dc.title關於一些具有代數特性組合結構的研究zh_TW
dc.titleA Study of Some Combinatorial Structures Supported by Bose-Mesner Algebrasen_US
dc.typePlanen_US
dc.contributor.department交通大學應用數學系zh_TW
Appears in Collections:Research Plans