標題: A new device for in situ static and dynamic calibration of force platforms
作者: Hsieh, Hong-Jung
Lu, Tung-Wu
Chen, Sheng-Chang
Chang, Chia-Min
Hung, Chinghua
機械工程學系
Department of Mechanical Engineering
關鍵字: Motion analysis;Force plate;Calibration;Center of pressure
公開日期: 1-Apr-2011
摘要: In human motion analysis, in situ calibration of the force plate is necessary to improve the accuracy of the measured ground reaction force (GRF) and center of pressure (COP). Few existing devices are capable of both static and dynamic calibration of the usually non-linear GRF and COP errors, while are also easy to move and/or set up without damaging the building. The current study developed a small device (160 cm x 88 cm x 43 cm) with a mass of 50 kg, equipped with auxiliary wheels and fixing suction pads for rapid deployment and easy set-up. A PC-based controller enabled quick movement and accurate positioning of the applied force to the calibration point. Static calibration at 100 validation points and dynamic calibration of a force plate were performed using the device. After correction by an artificial neural network (ANN) trained with the static data from another 121 points, the mean errors for the GRF were all reduced from a maximum of 0.64% to less than 0.01%, while those for the COP were all reduced from a maximum of about 1.37 mm to less than 0.04 mm. For dynamic calibration, the mean errors for the GRF were reduced from a maximum of 0.46% to less than 0.28%, while those for the COP were reduced from a maximum of 0.95 mm to less than 0.11 mm. The results suggest that the calibration device with the ANN method will be useful for obtaining more accurate GRF and COP measurements in human motion analysis. (C) 2011 Elsevier B.V. All rights reserved.
URI: http://dx.doi.org/10.1016/j.gaitpost.2011.03.005
http://hdl.handle.net/11536/9022
ISSN: 0966-6362
DOI: 10.1016/j.gaitpost.2011.03.005
期刊: GAIT & POSTURE
Volume: 33
Issue: 4
起始頁: 701
結束頁: 705
Appears in Collections:Articles


Files in This Item:

  1. 000291139600033.pdf