Title: Reduction of CO2 by a high-density culture of Chlorella sp in a semicontinuous photobioreactor
Authors: Chiu, Sheng-Yi
Kao, Chien-Ya
Chen, Chiun-Hsun
Kuan, Tang-Ching
Ong, Seow-Chin
Lin, Chih-Sheng
Department of Mechanical Engineering
Department of Biological Science and Technology
Keywords: microalga;Chlorella sp.;carbon dioxide;photobioreactor;biomass
Issue Date: 1-Jun-2008
Abstract: The microalga incorporated photobioreactor is a highly efficient biological system for converting CO2 into biomass. Using microalgal photobioreactor as CO2 mitigation system is a practical approach for elimination of waste gas from the CO2 emission. In this study, the marine microalga, Chlorella sp. was cultured in a photobioreactor to assess biomass, lipid productivity and CO2 reduction. We also determined the effects of cell density and CO2 concentration on the growth of Chlorella sp. During an 8-day interval cultures in the semicontinuous cultivation, the specific growth rate and biomass of Chlorella sp. cultures in the conditions aerated 2-15% CO2 were 0.58-0.66 d(-1) and 0.76-0.87g L-1, respectively. At CO2 concentrations of 2%, 5%, 10% and 15%, the rate of CO2, reduction was 0.261, 0.316, 0.466 and 0.573 g h(-1), and efficiency of CO2 removal was 58%, 27%, 20% and 16%, respectively. The efficiency of CO2 removal was similar in the single photobioreactor and in the six-parallel photobioreactor. However, CO2 reduction, production of biomass, and production of lipid were six times greater in the six-parallel photobioreactor than those in the single photobioreactor. In conclusion, inhibition of microalgal growth cultured in the system with high CO2 (10-15%) aeration could be overcome via a high-density culture of microalgal inoculum that was adapted to 2% CO2. Moreover, biological reduction of CO2 in the established system could be parallely increased using the photo bioreactor consisting of multiple units. (c) 2007 Elsevier Ltd. All rights reserved.
URI: http://dx.doi.org/10.1016/j.biortech.2007.08.013
ISSN: 0960-8524
DOI: 10.1016/j.biortech.2007.08.013
Volume: 99
Issue: 9
Begin Page: 3389
End Page: 3396
Appears in Collections:Articles

Files in This Item:

  1. 000254479300009.pdf