Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, Hui-Fenen_US
dc.contributor.authorLiang, Chi-Weien_US
dc.contributor.authorLin, Jim J.en_US
dc.contributor.authorLee, Yuan-Pernen_US
dc.contributor.authorOgilvie, J. F.en_US
dc.contributor.authorXu, Z. F.en_US
dc.contributor.authorLin, M. C.en_US
dc.date.accessioned2014-12-08T15:10:40Z-
dc.date.available2014-12-08T15:10:40Z-
dc.date.issued2008-11-07en_US
dc.identifier.issn0021-9606en_US
dc.identifier.urihttp://dx.doi.org/10.1063/1.2994734en_US
dc.identifier.urihttp://hdl.handle.net/11536/8156-
dc.description.abstractThe reaction between O((1)D) and C(6)H(6) (or C(6)D(6)) was investigated with crossed-molecular-beam reactive scattering and time-resolved Fourier-transform infrared spectroscopy. From the crossed-molecular-beam experiments, four product channels were identified. The major channel is the formation of three fragments CO+C(5)H(5)+H; the channels for formation of C(5)H(6)+CO and C(6)H(5)O+H from O((1)D)+C(6)H(6) and OD+C(6)D(5) from O((1)D)+C(6)D(6) are minor. The angular distributions for the formation of CO and H indicate a mechanism involving a long-lived collision complex. Rotationally resolved infrared emission spectra of CO (1 <=upsilon <= 6) and OH (1 <=upsilon <= 3) were recorded with a step-scan Fourier-transform spectrometer. At the earliest applicable period (0-5 mu s), CO shows a rotational distribution corresponding to a temperature of similar to 1480 K for upsilon=1 and 920-700 K for upsilon=2-6, indicating possible involvement of two reaction channels; the vibrational distribution of CO corresponds to a temperature of similar to 5800 K. OH shows a rotational distribution corresponding to a temperature of similar to 650 K for upsilon=1-3 and a vibrational temperature of similar to 4830 K. The branching ratio of [CO]/[OH]=2.1 +/- 0.4 for O((1)D)+C(6)H(6) and [CO]/[OD]>2.9 for O((1)D)+C(6)D(6) is consistent with the expectation for an abstraction reaction. The mechanism of the reaction may be understood from considering the energetics of the intermediate species and transition states calculated at the G2M(CC5) level of theory for the O((1)D)+C(6)H(6) reaction. The experimentally observed branching ratios and deuterium isotope effect are consistent with those predicted from calculations.en_US
dc.language.isoen_USen_US
dc.subjectatom-molecule reactionsen_US
dc.subjectchemical exchangesen_US
dc.subjectFourier transform spectraen_US
dc.subjectinfrared spectraen_US
dc.subjectisotope effectsen_US
dc.subjectmolecular beamsen_US
dc.subjectorganic compoundsen_US
dc.subjectoxygenen_US
dc.subjectreaction kineticsen_US
dc.subjectrotational statesen_US
dc.subjectvibrational statesen_US
dc.titleDynamics of reactions O((1)D)+C(6)H(6) and C(6)D(6)en_US
dc.typeArticleen_US
dc.identifier.doi10.1063/1.2994734en_US
dc.identifier.journalJOURNAL OF CHEMICAL PHYSICSen_US
dc.citation.volume129en_US
dc.citation.issue17en_US
dc.citation.epageen_US
dc.contributor.department應用化學系zh_TW
dc.contributor.department應用化學系分子科學碩博班zh_TW
dc.contributor.departmentDepartment of Applied Chemistryen_US
dc.contributor.departmentInstitute of Molecular scienceen_US
dc.identifier.wosnumberWOS:000260777400021-
dc.citation.woscount2-
Appears in Collections:Articles


Files in This Item:

  1. 000260777400021.pdf