標題: 支持向量模糊類神經網路及其在資料分類和函數近似之應用
Support-Vector based Fuzzy Neural Networks and its Applications to Pattern Classification and Function Approximation
作者: 葉長茂
Chang-Mao Yeh
林進燈
Chin-Teng Lin
電控工程研究所
關鍵字: 適應模糊核心函數;模糊類神經網路;支持向量機;支持向量回歸;分類;函數近似;adaptive fuzzy kernel function;fuzzy neural network;support vector machine;support vector regression;pattern classification;function approximation
公開日期: 2006
摘要: 模糊類神經網路經常使用倒傳遞學習演算法或分群學習演算法學習調整模糊規則和歸屬函數的參數以解決資料分類和函數回歸等問題,但是此學習演算法經常不能將訓練誤差及預測誤差同時地最小化,這將造成在資料分類之預測階段無法達到最好的分類效能,且對含有雜訊的訓練資料進行回歸近似時,常有過度訓練而造成回歸效能大大降低的問題。 本論文結合支持向量學習機制與模糊類神經網路的優點,提出一個新的支持向量模糊類神經網路(SVFNNs),此SVFNNs將高維度空間具有極優越分類能力的支持向量機(SVM)和極優越強健抗雜訊能力的支持向量回歸(SVR)與能夠有效處理不確定環境資訊的類似人類思考的模糊類神經網路之優點結合。首先我們提出一個適應模糊核心函數(adaptive fuzzy kernel),進行模糊法則建構,此模糊核心函數滿足支持向量學習所須之默塞爾定理(Mercer’s theorem), SVFNNs的學習演算法有參個學習階段,在第一個階段,藉由分群原理自動產生模糊規則和歸屬函數,在第二階段,利用具有適應模糊核心函數之SVM和SVR來計算模糊神經網路的參數,最後在第三階段,透過降低模糊規則的方法來移除不重要的模糊規則。我們將SVFNNs應用到Iris、Vehicle、Dna、Satimage、Ijcnn1五個資料集和兩個單變數及雙變數函數進行資料分類與函數近似應用,實驗結果顯示我們提出的SVFNNs能在使用較少的模糊規則下有很好的概化(generalization)之資料分類效能和強健抗雜訊的函數近似效能。
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT009012801
http://hdl.handle.net/11536/80891
Appears in Collections:Thesis


Files in This Item:

  1. 280101.pdf