標題: ε 對於q-KdV階層系統一孤立子和二孤立子解的修正The ε correction of one and two solitons solutions for the KdV hierarchy 作者: 陳宏榮Hung-Jung Chen邵錦昌Jiin-Chang Shaw應用數學系所 關鍵字: 孤立子;轉換;達布;q-KdV;Darboux;Lax;Wronskian 公開日期: 2005 摘要: 在這篇論文裡透過使用q-deformed的pseudodifferential 算子我們研究Darboux -Backlund轉換(DBTs)應用在 q-deformed Korteweg–de Vries 階層系統。 算子T 是由滿足特定線性系統的波函數所構成，有了這個T可以帶動DBTs的轉換。為了從舊的解去得到新的解 ，我們必須選擇一定特定的算子。反覆疊帶DBTs的轉換，我們獲得one soliton和two solitons的解。另外利用假設q趨近於一(這時q-KdV會回到原本的KdV)和ε等於q減一的假設我們也算出ε對於q-KdV階層系統一孤立子和二孤立子解的修正 。In this thesis we study Darboux -Backlund transformations (DBTs) for the q-deformed Korteweg -de Vries hierarchy by using the q-deformed pseudodifferential operators. The elementary DBTs are triggered by the gauge operators T constructed from the wave functions of the associated linear systems. In order to obtain the new solution from the old one , we have to choose certain gauge operator. Iterating these elementary DBTs, we obtain one and two solitons solutions. In addition we also figure out the ? correction of one and two solitons for the KdV hierarchy by letting ε equal to q − 1 and q approach 1(which will recovers q-KdV to the ordinary KdV). URI: http://140.113.39.130/cdrfb3/record/nctu/#GT009322517http://hdl.handle.net/11536/79007 Appears in Collections: Thesis

Files in This Item:

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.