Title: Ab initio chemical kinetics for the reactions of HNCN with O((3)P) and O(2)
Authors: Xu, Shucheng
Lin, M. C.
Institute of Molecular science
Issue Date: 1-Jan-2009
Abstract: The kinetics and mechanisms of the reactions of cyanomidyl radical (HNCN) with oxygen atoms and molecules have been investigated by ab initio calculations with rate constant prediction. The doublet and quartet state potential energy surfaces (PESs) of the two reactions have been calculated by single-point calculations at the CCSD(T)/6-311+G(3df, 2p) level based on geometries optimized at the CCSD/6-311++G(d, p) level. The rate constants for various product channels of the two reactions in the temperature range of 300-3000 K are predicted by variational transition state and RRKM theories. The predicted total rate constants of the O((3)P) + HNCN reaction at 760 Torr Ar pressure can be represented by the expressions k(total) (O + HNCN) = 3.12 x 10(-10) x T(-0.05) exp (-37/T) cm(3) molecule(-1) s(-1) at T= 300-3000 K. The branching ratios of primary channels of the O((3)P) + HNCN are predicted: k(1) for producing the NO + CNH accounts for 0.72-0.64, k(2) + k(9) for producing the (3)NH + NCO accounts for 0.27-0.32, and k(6) for producing the CN + HNO accounts for 0.01-0.07 in the temperature range studied. Meanwhile, the predicted total rate constants of the O(2) + HNCN reaction at 760 Torr Ar pressure can be represented by the expression, k(total)(O(2) + HNCN) = 2.10 x 10(-16) x T(1.28)exp (-12200/T) cm(3) molecule(-1) s(-1) at T = 300-3000 K. The predicted branching ratio for k(11) + k(13) producing HO(2) + (3)NCN as the primary products accounts for 0.98-1.00 in the temperature range studied. (C) 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
URI: http://dx.doi.org/10.1016/j.proci.2008.07.011
ISSN: 1540-7489
DOI: 10.1016/j.proci.2008.07.011
Volume: 32
Begin Page: 99
End Page: 106
Appears in Collections:Articles