標題: Non-fluorinated superamphiphobic surfaces through sol-gel processing of methyltriethoxysilane and tetraethoxysilane
作者: Sheen, Yuung-Ching
Chang, Wei-Hsuan
Chen, Wen-Chang
Chang, Yih-Her
Huang, Yuan-Chang
Chang, Feng-Chih
應用化學系
Department of Applied Chemistry
關鍵字: Superamphilopbic;Sol-gel;Silica;Nanoparticle
公開日期: 15-Mar-2009
摘要: In this study, a simple approach was developed to fabricate an extremely superamphiphobic coating material by the tetraethoxysilane (TEOS) and methyltriethoxysilane (MTES) sol-gel derived materials. TEOS and MTES derived moieties were designed for a physical roughness and hydrophobic surface characteristic, respectively. The (29)Si solid-state NMR and ESCA analysis showed the coated silica composition was similar to the feeding ratios of TEOS/MTES. The surface structure characterized from SEM and TEM suggested the nanoparticle-based silica surface was observed at a high TEOS/MTES content but changed to a relatively smooth surface at a low TEOS content. The contact angles of water and CH(2)I(2) on the pure TEOS derived coated surface were both 0 degrees due to the hydrophilic Si-OH group. As the MTES composition increased to 25 mol% (T5M3), the coated surface had the contact angles of 149.8 degrees and 133.1 degrees for water and CH(2)I(2), respectively. It revealed that the T5M3-coated surface exhibited both super-hydrophobicity and super-oleophobicity, i.e., superamphiphobicity. Also, it had a relatively low-surface energy (1.38 mJ m(-2)) considerably lower than that of the F-silane-coated surface with 39.3 mJ m(-2). As the MTES composition increased further, both contact angles of water and CH(2)I(2) decreased. Especially, they decreased dramatically at the MTES feeding composition higher than 75 mol%, due to the much less rough surface at a higher MTES composition. The present study suggests that superamphiphobic surface could be achieved by non-fluorinated sol-gel derived silica materials. (C) 2008 Published by Elsevier B.V.
URI: http://dx.doi.org/10.1016/j.matchemphys.2008.07.132
http://hdl.handle.net/11536/7481
ISSN: 0254-0584
DOI: 10.1016/j.matchemphys.2008.07.132
期刊: MATERIALS CHEMISTRY AND PHYSICS
Volume: 114
Issue: 1
起始頁: 63
結束頁: 68
Appears in Collections:Articles


Files in This Item:

  1. 000263249600015.pdf