Title: Sliding Abrikosov lattice in a superconductor with a regular array of artificial pinning centers: AC conductivity and criticality at small frequencies
Authors: Maniv, T.
Rosenstein, B.
Shapiro, I.
Shapiro, B. Ya.
Hung, R. F.
Department of Electrophysics
Keywords: Sliding vortex lattice;Periodic pinning array;Time-dependent Ginzburg-Landau theory
Issue Date: 1-Oct-2010
Abstract: Dynamics of the flux lattice in the mixed state of strongly type-II superconductor near the upper critical field subjected to AC field and interacting with a periodic array of short range pinning centers is considered. The superconductor in a magnetic field in the absence of thermal fluctuations on is described by the time-dependent Ginzburg-Landau equations. For a special case of the delta-function shaped pinning centers and for pinning array commensurate with the Abrikosov lattice (so that vortices outnumber pinning centers) an analytic expression or the AC conductivity is obtained. It is found that below a certain critical pinning strength and for sufficiently low frequencies there exists a sliding Abrikosov lattice, which vibrates nearly uniformly despite interactions with the pinning centers. At very small frequencies the conductivity diverges at the critical pinning strength. (C) 2010 Elsevier B.V. All rights reserved.
URI: http://dx.doi.org/10.1016/j.physc.2010.02.070
ISSN: 0921-4534
DOI: 10.1016/j.physc.2010.02.070
Volume: 470
Issue: 19
Begin Page: 744
End Page: 746
Appears in Collections:Conferences Paper

Files in This Item:

  1. 000282454400008.pdf