Title: Shock Tube Study on the Thermal Decomposition of CH(3)OH
Authors: Lu, Ku-We
Matsui, Hiroyuki
Huang, Ching-Liang
Raghunath, P.
Wang, Niann-Shiah
Lin, M. C.
Department of Applied Chemistry
Issue Date: 6-May-2010
Abstract: H atom produced in the thermal decomposition of CH(3)OH highly diluted in Ar (0.48-10 ppm) was monitored behind reflected shock waves by atomic resonance absorption spectrometry (ARAS) at fixed temperatures (and pressures), that is, 1660 (1.73 atm), 1760 (2.34 atm), 1860 (2.04 atm), 1950 (2.18 atm), and 2050 K (1.76 atm) (+/- 10 K, respectively). High sensitivity for the H atom has been attained by signal averaging of the ARAS signals down to the concentrations of similar to 1 x 10(11) atoms/cm(3) and enables us to determine the branching fraction for the direct H atom production channel, CH(3)OH -> CH(2)OH + H (channel 1c) in a mixture of 1 ppm CH(3)OH. Channel 1c is confirmed to be minor, that is, branching fraction for channel 1c is expressed by Log(k(1c)/k(1)) = (- 2.88 +/- 1.88) x 10(3)/T - (0.23 +/- 1.02), which corresponds to k(1c)/k(1) < 0.03 for the present temperature range. By using 0.48 and 1.0 ppm CH(3)OH with (100-1000) ppm H(2), the total decomposition rate k(1) for CH(3)OH -> products is measured from the time dependence of H atom, where the radical products of main channels 1a and 1b, that is, OH, CH(3), and CH(2), were converted rapidly into H atoms. The experimental result is summarized as Log(k(1)/cm(3)molecule(-1)s(-1)) = (-12.82 +/- 0.71) x 10(3)/T - (8.5 +/- 0.38). A theoretical study based on ab initio/TST calculations with high accuracy has been conducted for the reaction: (3)CH(2) + H(2) -> CH(3) + H (reaction 3). The rate is given by k(3)/cm(3)molecule(-1) s(-1) = (7.32 x 10(-19))T(2.3) exp (-3699/T). This result is used for numerical simulations to evaluate k(1). Present experimental results on the thermal decomposition rate of CH(3)OH are found to be consistent with previous works. It is also found that time dependence of [H] observed in the 10 ppm CH(3)OH in Ar can be reproduced very well by kinetic simulations by using a reaction mechanism composed of 36 elementary reactions.
URI: http://dx.doi.org/10.1021/jp100535r
ISSN: 1089-5639
DOI: 10.1021/jp100535r
Volume: 114
Issue: 17
Begin Page: 5493
End Page: 5502
Appears in Collections:Articles