標題: 加權基本不震盪法結合類神經網路與遺傳演算法應用於一維淺水波方程式之求解
Applying Weighted Essentially Non-oscillatory Schemes combined with Artificial Neural Network and Genetic Algorithm to Solving 1-D Shallow Water Equations
作者: 李勁頤
Li, Chin-I
葉克家
土木工程學系
關鍵字: 加權基本不震盪法;類神經網路;遺傳演算法;一維淺水波方程式;WENO;ANN;GA;1D shallow-water equations
公開日期: 2010
摘要: 本研究以原始高階WENO5算則(Jiang and Shu 1996)為基礎所提出在強震波區域的改進方法:修正平滑指示器WENO5算則(Zhang and Shu 2007),將之應用於求解一維淺水波方程式,發現在某些情況下,會產生較不好的模擬結果。為改善此模擬結果,本研究以修正平滑指示器WENO5算則的收斂理念為基礎,結合類神經網路(ANN)與遺傳演算法(GA)的原理,透過學習嘗試發展出一套以類神經網路來判斷收斂程度,間接決定WENO算則權重的新算則。最後以一簡單之平滑曲線的微分案例與各種一維明渠流案例進行模擬,比較新算則與各式WENO5算則所得之結果,以評估新算則模擬之收斂性與精確性。
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT079716547
http://hdl.handle.net/11536/44855
Appears in Collections:Thesis


Files in This Item:

  1. 654701.pdf