Full metadata record
DC FieldValueLanguage
dc.contributor.authorHuang, Ming-Hwayen_US
dc.contributor.authorFu, Chin-Meien_US
dc.contributor.authorFu, Hung-Linen_US
dc.date.accessioned2014-12-08T15:05:31Z-
dc.date.available2014-12-08T15:05:31Z-
dc.date.issued2007-10-01en_US
dc.identifier.issn1382-6905en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s10878-007-9049-5en_US
dc.identifier.urihttp://hdl.handle.net/11536/4052-
dc.description.abstractLet K-n1,(n2),..., n(m) be a complete m-partite graph with partite sets of sizes n(1),n(2),...,n(m). A complete m-partite graph is balanced if each partite set has n vertices. We denote this complete m-partite graph by K-m(n). In this paper, we completely solve the problem of finding a maximum packing of the balanced complete m-partite graph K-m(n), m odd, with edge-disjoint 5-cycles and we explicitly give the minimum leaves.en_US
dc.language.isoen_USen_US
dc.subjectcomplete m-partite graphen_US
dc.subjectbalanced complete m-partite graphen_US
dc.subject5-cycleen_US
dc.subjectpackingen_US
dc.subjectleaveen_US
dc.subjectdecompositionen_US
dc.titlePacking 5-cycles into balanced complete m-partite graphs for odd men_US
dc.typeArticle; Proceedings Paperen_US
dc.identifier.doi10.1007/s10878-007-9049-5en_US
dc.identifier.journalJOURNAL OF COMBINATORIAL OPTIMIZATIONen_US
dc.citation.volume14en_US
dc.citation.issue2-3en_US
dc.citation.spage323en_US
dc.citation.epage329en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000248864800020-
Appears in Collections:Conferences Paper


Files in This Item:

  1. 000248864800020.pdf