Full metadata record
DC FieldValueLanguage
dc.contributor.authorHwang, FKen_US
dc.contributor.authorRothblum, UGen_US
dc.date.accessioned2014-12-08T15:37:00Z-
dc.date.available2014-12-08T15:37:00Z-
dc.date.issued2005en_US
dc.identifier.issn0895-4801en_US
dc.identifier.urihttp://hdl.handle.net/11536/25425-
dc.identifier.urihttp://dx.doi.org/10.1137/S0895480198347167en_US
dc.description.abstractWe study optimization problems over partitions of the finite set N = {1,..., n}, where each element i in the partitioned set N is associated with a real number θ(i) and the objective associated with a partition ρ = (π(1),..., π(p)) has the form F(π) = f(θ(π)), where θ(π) = (&USigma;(i∈π 1) θ(i),..., &USigma;(i∈π p) θ(i)). When F is to be either maximized or minimized, we obtain conditions that allow for simple constructions of partitions that are uniformly optimal for all Schur convex functions f.en_US
dc.language.isoen_USen_US
dc.subjectpartitionsen_US
dc.subjectoptimizationen_US
dc.subjectSchur-convexityen_US
dc.titlePartition-optimization with Schur convex sum objective functionsen_US
dc.typeArticleen_US
dc.identifier.doi10.1137/S0895480198347167en_US
dc.identifier.journalSIAM JOURNAL ON DISCRETE MATHEMATICSen_US
dc.citation.volume18en_US
dc.citation.issue3en_US
dc.citation.spage512en_US
dc.citation.epage524en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000228918000008-
dc.citation.woscount10-
Appears in Collections:Articles


Files in This Item:

  1. 000228918000008.pdf