Full metadata record
DC FieldValueLanguage
dc.contributor.authorChiu, Well Y.en_US
dc.contributor.authorChen, Chiuyuanen_US
dc.contributor.authorTsai, Shih-Yuen_US
dc.date.accessioned2014-12-08T15:36:28Z-
dc.date.available2014-12-08T15:36:28Z-
dc.date.issued2014-10-01en_US
dc.identifier.issn0020-0190en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.ipl.2014.04.011en_US
dc.identifier.urihttp://hdl.handle.net/11536/24805-
dc.description.abstractA distributed system is self-stabilizing if, regardless of its initial state, the system is guaranteed to reach a legitimate (i.e., correct) state in finite time. In 2007, Turau proposed the first linear-time self-stabilizing algorithm for the minimal dominating set (MDS) problem under an unfair distributed daemon [9]; this algorithm stabilizes in at most 9n moves, where n is the number of nodes in the system. In 2008, Goddard et al. [4] proposed a 5n-move algorithm. In this paper, we present a 4n-move algorithm. (C) 2014 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectSelf-stabilizing algorithmen_US
dc.subjectFault toleranceen_US
dc.subjectDistributed computingen_US
dc.subjectGraph algorithmen_US
dc.subjectDominationen_US
dc.titleA 4n-move self-stabilizing algorithm for the minimal dominating set problem using an unfair distributed daemonen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.ipl.2014.04.011en_US
dc.identifier.journalINFORMATION PROCESSING LETTERSen_US
dc.citation.volume114en_US
dc.citation.issue10en_US
dc.citation.spage515en_US
dc.citation.epage518en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000338973400001-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. 000338973400001.pdf