Full metadata record
DC FieldValueLanguage
dc.contributor.authorHu, Weiguoen_US
dc.contributor.authorBudiman, Mohd Fairuzen_US
dc.contributor.authorIgarashi, Makotoen_US
dc.contributor.authorLee, Ming-Yien_US
dc.contributor.authorLi, Yimingen_US
dc.contributor.authorSamukawa, Seijien_US
dc.date.accessioned2014-12-08T15:31:15Z-
dc.date.available2014-12-08T15:31:15Z-
dc.date.issued2013-07-01en_US
dc.identifier.issn0895-7177en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.mcm.2012.11.012en_US
dc.identifier.urihttp://hdl.handle.net/11536/22254-
dc.description.abstractWithin the envelop-function framework, we developed the finite element method to calculate the minibands in the realist Silicon nanocrystal array. This method clearly reveals the miniband formation and accurately calculates the E-K dispersion relationship. In the simple 1D array, the deduced miniband structure matches well with the analytic Kronig-Penney method. More importantly, it can better simulate the 2D and 3D nanocrystal array, which avoids approximations of the quantum cubic box and the independent periodic potential of the multi-dimension Kronig-Penney method. Further, this model is utilized to calculate miniband structure of realistic 2D-array Silicon nanodisk array for guiding quantum dot solar cell design. (C) 2012 Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectFinite element methoden_US
dc.subjectMinibanden_US
dc.subjectQuantum dot solar cellen_US
dc.titleModeling miniband for realistic silicon nanocrystal arrayen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.mcm.2012.11.012en_US
dc.identifier.journalMATHEMATICAL AND COMPUTER MODELLINGen_US
dc.citation.volume58en_US
dc.citation.issue1-2en_US
dc.citation.spage306en_US
dc.citation.epage311en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000320601000032-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. 000320601000032.pdf