標題: Protein-Protein Interaction Site Predictions with Three-Dimensional Probability Distributions of Interacting Atoms on Protein Surfaces
作者: Chen, Ching-Tai
Peng, Hung-Pin
Jian, Jhih-Wei
Tsai, Keng-Chang
Chang, Jeng-Yih
Yang, Ei-Wen
Chen, Jun-Bo
Ho, Shinn-Ying
Hsu, Wen-Lian
Yang, An-Suei
生物資訊及系統生物研究所
Institude of Bioinformatics and Systems Biology
公開日期: 6-Jun-2012
摘要: Protein-protein interactions are key to many biological processes. Computational methodologies devised to predict protein-protein interaction (PPI) sites on protein surfaces are important tools in providing insights into the biological functions of proteins and in developing therapeutics targeting the protein-protein interaction sites. One of the general features of PPI sites is that the core regions from the two interacting protein surfaces are complementary to each other, similar to the interior of proteins in packing density and in the physicochemical nature of the amino acid composition. In this work, we simulated the physicochemical complementarities by constructing three-dimensional probability density maps of non-covalent interacting atoms on the protein surfaces. The interacting probabilities were derived from the interior of known structures. Machine learning algorithms were applied to learn the characteristic patterns of the probability density maps specific to the PPI sites. The trained predictors for PPI sites were cross-validated with the training cases (consisting of 432 proteins) and were tested on an independent dataset (consisting of 142 proteins). The residue-based Matthews correlation coefficient for the independent test set was 0.423; the accuracy, precision, sensitivity, specificity were 0.753, 0.519, 0.677, and 0.779 respectively. The benchmark results indicate that the optimized machine learning models are among the best predictors in identifying PPI sites on protein surfaces. In particular, the PPI site prediction accuracy increases with increasing size of the PPI site and with increasing hydrophobicity in amino acid composition of the PPI interface; the core interface regions are more likely to be recognized with high prediction confidence. The results indicate that the physicochemical complementarity patterns on protein surfaces are important determinants in PPIs, and a substantial portion of the PPI sites can be predicted correctly with the physicochemical complementarity features based on the non-covalent interaction data derived from protein interiors.
URI: http://dx.doi.org/e37706
http://hdl.handle.net/11536/16487
ISSN: 1932-6203
DOI: e37706
期刊: PLOS ONE
Volume: 7
Issue: 6
結束頁: 
Appears in Collections:Articles


Files in This Item:

  1. 000305348400017.pdf