Title: Interface control of bulk ferroelectric polarization
Authors: Yu, P.
Luo, W.
Yi, D.
Zhang, J. X.
Rossell, M. D.
Yang, C. -H.
You, L.
Singh-Bhalla, G.
Yang, S. Y.
He, Q.
Ramasse, Q. M.
Erni, R.
Martin, L. W.
Chu, Y. H.
Pantelides, S. T.
Pennycook, S. J.
Ramesh, R.
材料科學與工程學系
Department of Materials Science and Engineering
Keywords: complex oxide;heterostructure;interface physics;electronic reconstruction;polar discontinuity
Issue Date: 19-Jun-2012
Abstract: The control of material interfaces at the atomic level has led to novel interfacial properties and functionalities. In particular, the study of polar discontinuities at interfaces between complex oxides lies at the frontier of modern condensed matter research. Here we employ a combination of experimental measurements and theoretical calculations to demonstrate the control of a bulk property, namely ferroelectric polarization, of a heteroepitaxial bilayer by precise atomic-scale interface engineering. More specifically, the control is achieved by exploiting the interfacial valence mismatch to influence the electrostatic potential step across the interface, which manifests itself as the biased-voltage in ferroelectric hysteresis loops and determines the ferroelectric state. A broad study of diverse systems comprising different ferroelectrics and conducting perovskite underlayers extends the generality of this phenomenon.
URI: http://hdl.handle.net/11536/16474
ISSN: 0027-8424
Journal: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
Volume: 109
Issue: 25
End Page: 9710
Appears in Collections:Articles


Files in This Item:

  1. 000306061400019.pdf