Title: A novel peristaltic micropump with low compression ratios
Authors: Tsui, Yeng-Yung
Chang, Tso-Chang
Department of Mechanical Engineering
Keywords: peristaltic micropump;low compression ratio;lumped-system analysis;CFD simulation
Issue Date: 20-Jul-2012
Abstract: It is common for peristaltic micropumps to have large compression ratios. In the limit, the chamber of the pump is completely blocked by the membrane to prevent back flow. Different from this kind of pump, a micropump with small compression ratios is proposed in this study. With small oscillation amplitudes the membrane of the pump can reciprocate at high frequencies to improve its pumping flow. Both the multidimensional method and the lumped-element method are employed for analysis. For this kind of peristaltic micropump the working fluid is allowed to flow freely in the forward and backward directions. Therefore, the operating sequences for the high-compression ratio type of pumps are not appropriate. It is shown that the theoretical net flow rate is zero for the four-phase and six-phase modes of sequence and becomes negative for the three-phase mode unless regulators, such as the nozzle/diffusers, are incorporated to rectify the flow. However, this pump becomes very attractive by reversing the operating sequence of the three-phase mode because positive net flow is yielded. It is seen that with the reversed three-phase mode and the nozzle/diffuser as connecting channels, the pumping effectiveness is greatly enhanced. The pumps with both two chambers and three chambers are under consideration in the study. Copyright (c) 2011 John Wiley & Sons, Ltd.
URI: http://hdl.handle.net/11536/16428
ISSN: 0271-2091
Volume: 69
Issue: 8
End Page: 1363
Appears in Collections:Articles

Files in This Item:

  1. 000305183400004.pdf