Title: Nanoindentation response of zinc titanate thin films deposited by co-sputtering process
Authors: Wu, Shyh-Chi
Jeng, Yeau-Ren
Yau, Wei-Hung
Wu, Kuan-Te
Tsai, Chien-Huang
Chou, Chang-Pin
Department of Mechanical Engineering
Keywords: Radio frequency magnetron co-sputtering;Hardness;Atomic force microscopy;X-ray photoelectron spectroscopy
Issue Date: 1-Jul-2012
Abstract: In this study, ZnTiO3 films were grown by radio frequency magnetron co-sputtering using a sintered ceramic target on silicon substrates, we used nanoindenter techniques under a CSM mode to evaluate the hardness (H) and elastic modulus (E) of the films after annealing in temperature range of 520-820 degrees C. The measured values of hardness and elastic moduli of the ZnTiO3 films were in the range from 8.5 +/- 0.4 to 5.6 +/- 0.4 GPa and from 171 +/- 2.3 to 155 +/- 2.5 GPa, respectively. It is evident that an increase in the roughness due to high annealing temperature using atomic force microscopy. The XRD patterns were observed that as-deposited films are mainly amorphous, however, the hexagonal ZnTiO3 phase was observed with the ZnTiO3 (1 0 4), (1 1 0), (1 1 6), and (2 1 4) peaks from 620 to 820 degrees C, indicating that there is highly (1 0 4)-oriented ZnTiO3 on the silicon substrate. The X-ray photoelectron spectroscopy core level analysis of the ZnTiO3 films have been measured for O 1s that can be attributed the weaker bonds and lower resistance at the film based on the higher annealed temperature. The H, M, Rms, and Ra were altered due to the grain growth and recovery to result in a relax crystallinity at ZnTiO3 films. (C) 2012 Elsevier B. V. All rights reserved.
URI: http://hdl.handle.net/11536/16257
ISSN: 0169-4332
Volume: 258
Issue: 18
End Page: 6730
Appears in Collections:Articles

Files in This Item:

  1. 000304004100003.pdf