Full metadata record
DC FieldValueLanguage
dc.contributor.authorKao, YMen_US
dc.contributor.authorJiang, TFen_US
dc.date.accessioned2019-04-03T06:39:03Z-
dc.date.available2019-04-03T06:39:03Z-
dc.date.issued2005-03-01en_US
dc.identifier.issn2470-0045en_US
dc.identifier.urihttp://dx.doi.org/10.1103/PhysRevE.71.036702en_US
dc.identifier.urihttp://hdl.handle.net/11536/13982-
dc.description.abstractWe extend the Adomian's decomposition method to work for the general eigenvalue problems, in addition to the existing applications of the method to boundary and initial value problems with nonlinearity. We develop the Hamiltonian inverse iteration method which will provide the ground state eigenvalue and the explicit form eigenfunction within a few iterations. The method for finding the excited states is also proposed. We present a space partition method for the case that the usual way of series expansion failed to converge.en_US
dc.language.isoen_USen_US
dc.titleAdomian's decomposition method for eigenvalue problemsen_US
dc.typeArticleen_US
dc.identifier.doi10.1103/PhysRevE.71.036702en_US
dc.identifier.journalPHYSICAL REVIEW Een_US
dc.citation.volume71en_US
dc.citation.issue3en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.department物理研究所zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.contributor.departmentInstitute of Physicsen_US
dc.identifier.wosnumberWOS:000228818200152en_US
dc.citation.woscount4en_US
Appears in Collections:Articles


Files in This Item:

  1. 5022de97e7eedc20376f02c6f44cc986.pdf