Full metadata record
DC FieldValueLanguage
dc.contributor.authorGuo, JYen_US
dc.contributor.authorHwang, FKen_US
dc.date.accessioned2014-12-08T15:19:08Z-
dc.date.available2014-12-08T15:19:08Z-
dc.date.issued2005-05-16en_US
dc.identifier.issn0020-0190en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.ipl.2005.01.002en_US
dc.identifier.urihttp://hdl.handle.net/11536/13707-
dc.description.abstractThere are two general approaches to the longest common subsequence problem. The dynamic programming approach takes quadratic time but linear space, while the nondynamic-programming approach takes less time but more space. We propose a new implementation of the latter approach which seems to get the best for both time and space for the DNA application. (c) 2005 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectalgorithmsen_US
dc.subjectprimal-dual algorithmen_US
dc.subjectlongest common subsequenceen_US
dc.titleAn almost-linear time and linear space algorithm for the longest common subsequence problemen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.ipl.2005.01.002en_US
dc.identifier.journalINFORMATION PROCESSING LETTERSen_US
dc.citation.volume94en_US
dc.citation.issue3en_US
dc.citation.spage131en_US
dc.citation.epage135en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000228458200006-
dc.citation.woscount4-
Appears in Collections:Articles


Files in This Item:

  1. 000228458200006.pdf