Full metadata record
DC FieldValueLanguage
dc.contributor.authorBhongale, CJen_US
dc.contributor.authorChang, CWen_US
dc.contributor.authorLee, CSen_US
dc.contributor.authorDiau, EWGen_US
dc.contributor.authorHsu, CSen_US
dc.date.accessioned2014-12-08T15:18:44Z-
dc.date.available2014-12-08T15:18:44Z-
dc.date.issued2005-07-21en_US
dc.identifier.issn1520-6106en_US
dc.identifier.urihttp://dx.doi.org/10.1021/jp0502297en_US
dc.identifier.urihttp://hdl.handle.net/11536/13478-
dc.description.abstractWith a reprecipitation method, we prepared fluorescent organic nanoparticles of 1,4-di[(E)-2-phenyl-1-propenyl]-benzene (PPB) that feature weak emission in solution but exhibit blue-shifted absorption and strong emission as aggregates. Picosecond fluorescent transients of these PPB nanoparticles showed biexponential decay, described with a consecutive kinetic model involving two emissive states. X-ray diffraction patterns of PPB nanocrystals indicate long-range packing structures of two types, one the same as in a single crystal and the other not yet determined. PPB molecules in a crystal show an arrangement of a herringbone type with three benzene rings in a PPB unit being nearly planar and two methyl groups of the unit pointing along the same direction, in contrast to the twisted structure of an isolated PPB molecule. Fluorescence transients of PPB on a femtosecond scale indicate an efficient channel for isomerization that is activated for free PPB in solution but inhibited in PPB forming nanoparticles, demonstrating the significance of molecular geometry and twisting motions that affect the relaxation dynamics in the excited state. The versatile techniques combined in this work provide strong evidence to improve our understanding of optical properties in organic nanoparticles dependent on size.en_US
dc.language.isoen_USen_US
dc.titleRelaxation dynamics and structural characterization of organic nanoparticles with enhanced emissionen_US
dc.typeArticleen_US
dc.identifier.doi10.1021/jp0502297en_US
dc.identifier.journalJOURNAL OF PHYSICAL CHEMISTRY Ben_US
dc.citation.volume109en_US
dc.citation.issue28en_US
dc.citation.spage13472en_US
dc.citation.epage13482en_US
dc.contributor.department應用化學系分子科學碩博班zh_TW
dc.contributor.departmentInstitute of Molecular scienceen_US
dc.identifier.wosnumberWOS:000230526800011-
dc.citation.woscount106-
Appears in Collections:Articles


Files in This Item:

  1. 000230526800011.pdf