Title: Carrier capture and relaxation in InAs quantum dots
Authors: Sun, KW
Chen, JW
Lee, BC
Lee, CP
Kechiantz, AM
Department of Electronics Engineering and Institute of Electronics
Issue Date: 1-Sep-2005
Abstract: We have investigated the carrier capture and relaxation processes in InAs/GaAs self-assembled quantum dots at room temperature by time-resolved photoluminescence techniques with a high time resolution of similar to 200 fs. Following the initial fast relaxation in GaAs barriers, we have observed rising processes in time-resolved PL intensity at the energies of quantum dot confined states and the wetting layer. The rising processes are assigned to the carrier capture from the barriers into the wetting layer and confined states in InAs dots and subsequent relaxation in each detected energy level. We found that the carrier capture rate is faster than the intra-dot relaxation within the range of excitation densities that we investigated. Under high excitation intensity, the electronic states in the dots were populated mainly by carriers directly captured from the barrier. However, at low excitation densities, the PL rise times were influenced by the carrier diffusion.
URI: http://dx.doi.org/10.1088/0957-4484/16/9/021
ISSN: 0957-4484
DOI: 10.1088/0957-4484/16/9/021
Volume: 16
Issue: 9
Begin Page: 1530
End Page: 1535
Appears in Collections:Articles

Files in This Item:

  1. 000232089500021.pdf