Title: A computational study on the energetics and mechanisms for the dissociative adsorption of SiHx(x=1-4) on W(111) surface
Authors: Lin, Y. H.
Raghunath, P.
Lin, M. C.
Department of Applied Chemistry
Issue Date: 30-Jan-2016
Abstract: The adsorption and dissociation mechanisms of SiHx(x = 1-4) species on W(111) surface have been investigated by using the periodic density functional theory with the projector-augmented wave approach. The adsorption of all the species on four surface sites: top (T), bridge (B), shallow (S), and deep (D) sites have been analyzed. For SiH4 on a top site, T-SiH4(a), it is more stable with an adsorption energy of 2.6 kcal/mol. For SiH3, the 3-fold shallow site is most favorable with adsorption energy of 46.0 kcal/mol. For SiH2, its adsorption on a bridge site is most stable with 73.0 kcal/mol binding energy, whereas for SiH and Si the most stable adsorption configurations are on 3-fold deep sites with very high adsorption energies, 111.8 and 134.7 kcal/mol, respectively. The potential energy surfaces for the dissociative adsorption of all SiH species on the W(111) surface have been constructed using the CINEB method. The barriers for H-atom migration from SiHx(a) to its neighboring W atoms, preferentially on B-sites, were predicted to be 0.4, 1.0, 4.5 and, 8.0 kcal/mol, respectively, for x= 4, 3, 2, and 1, respectively. The adsorption energy of the H atom on a bridge site on the clean W(1 1 1) surface was predicted to be 65.9 kcal/mol, which was found to be slightly affected by the co-adsorption of SiHx-1 within +/- 1 kcal/mol. (C) 2015 Elsevier B.V. All rights reserved.
URI: http://dx.doi.org/10.1016/j.apsusc.2015.11.109
ISSN: 0169-4332
DOI: 10.1016/j.apsusc.2015.11.109
Volume: 362
Begin Page: 551
End Page: 556
Appears in Collections:Articles