Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, SHen_US
dc.contributor.authorHou, SPen_US
dc.contributor.authorHsieh, JHen_US
dc.contributor.authorChang, FCen_US
dc.contributor.authorChen, WKen_US
dc.date.accessioned2014-12-08T15:17:41Z-
dc.date.available2014-12-08T15:17:41Z-
dc.date.issued2006-01-01en_US
dc.identifier.issn1071-1023en_US
dc.identifier.urihttp://dx.doi.org/10.1116/1.2150223en_US
dc.identifier.urihttp://hdl.handle.net/11536/12832-
dc.description.abstractConducting atomic force microscopy and scanning surface-potential microscopy have been applied to image the surfaces of Mg-In-codoped GaN films grown by low-pressure metal-organic chemical-vapor deposition. Biscyclopentadienylmagnesium (CP2Mg) and trimethylindium (TMIn) have been used as the codoping sources in the experiment. The dislocation density at the film surface reduces to the lowest level (similar to 1.0 X 10(9) cm(-2)) when the TMIn/CP2Mg flow rate ratio is about 1. The dislocation density tends to rise when the flow ratio increases, and carriers of the film accumulate near the rim of the dislocation at an accelerated speed. The work function of dislocation is also found lower than that of nondislocation areas. Such electrical unevenness may seriously influence the light emission of the component, which should not be ignored during fabrication and deserves careful attention. (c) 2006 American Vacuum Society.en_US
dc.language.isoen_USen_US
dc.titleAdvanced electrical imaging of dislocations in Mg-In-codoped GaN filmsen_US
dc.typeArticleen_US
dc.identifier.doi10.1116/1.2150223en_US
dc.identifier.journalJOURNAL OF VACUUM SCIENCE & TECHNOLOGY Ben_US
dc.citation.volume24en_US
dc.citation.issue1en_US
dc.citation.spage108en_US
dc.citation.epage112en_US
dc.contributor.department電子物理學系zh_TW
dc.contributor.departmentDepartment of Electrophysicsen_US
dc.identifier.wosnumberWOS:000235845900019-
dc.citation.woscount3-
Appears in Collections:Articles


Files in This Item:

  1. 000235845900019.pdf