Title: Ultrafast Multi-Level Logic Gates with Spin-Valley Coupled Polarization Anisotropy in Monolayer MoS2
Authors: Wang, Yu-Ting
Luo, Chih-Wei
Yabushita, Atsushi
Wu, Kaung-Hsiung
Kobayashi, Takayoshi
Chen, Chang-Hsiao
Li, Lain-Jong
Department of Electrophysics
Issue Date: 6-Feb-2015
Abstract: The inherent valley-contrasting optical selection rules for interband transitions at the K and K\' valleys in monolayer MoS2 have attracted extensive interest. Carriers in these two valleys can be selectively excited by circularly polarized optical fields. The comprehensive dynamics of spin valley coupled polarization and polarized exciton are completely resolved in this work. Here, we present a systematic study of the ultrafast dynamics of monolayer MoS2 including spin randomization, exciton dissociation, free carrier relaxation, and electron-hole recombination by helicity- and photon energy-resolved transient spectroscopy. The time constants for these processes are 60 fs, 1 ps, 25 ps, and, similar to 300 ps, respectively. The ultrafast dynamics of spin polarization, valley population, and exciton dissociation provides the desired information about the mechanism of radiationless transitions in various applications of 2D transition metal dichalcogenides. For example, spin valley coupled polarization provides a promising way to build optically selective-driven ultrafast valleytronics at room temperature. Therefore, a full understanding of the ultrafast dynamics in MoS2 is expected to provide important fundamental and technological perspectives.
URI: http://dx.doi.org/10.1038/srep08289
ISSN: 2045-2322
DOI: 10.1038/srep08289
Journal: Scientific Reports
Appears in Collections:Articles