Title: Unstable vortex flow and new inertia-driven vortex rolls resulting from an air jet impinging onto a confined heated horizontal disk
Authors: Hsieh, F. C.
Wu, J. H.
Hsieh, J. C.
Lin, T. F.
機械工程學系
Department of Mechanical Engineering
Issue Date: 1-Dec-2006
Abstract: An experiment combining flow visualization and temperature measurement is carried out here to investigate the possible presence of new inertia-driven vortex rolls and some unique characteristics of the time-dependent mixed convective vortex flow in a high-speed round air jet impinging onto a heated horizontal circular disk confined in a vertical cylindrical chamber. How the jet Reynolds and Rayleigh numbers and jet-to-disk separation distance affect the unique vortex flow characteristics is examined in detail. Specifically, the experiment is conducted for the jet Reynolds number varying from 0 to 1623 and Rayleigh number from 0 to 63,420 for the jet-to-disk separation distance fixed at 10.0, 20.0 and 30.0 mm. The results indicate that at sufficiently high Re-j the inertia-driven tertiary and quaternary rolls can be induced aside from the primary and secondary rolls. At an even higher Re-j the vortex flow becomes unstable due to the inertia-driven flow instability. Only for H = 20.0 mm the flow is also subjected to the buoyancy-driven instability for the ranges of the parameters covered here. Because of the simultaneous presence of the inertia- and buoyancy-driven flow instabilities, a reverse flow transition can take place in the chamber with H = 20.0 mm. At the large H of 30.0 mm the flow unsteadiness results from the mutual pushing and squeezing of the inertia- and buoyancy-driven rolls since they are relatively large and contact with each other. It is also noted that the critical Re-j for the onset of unsteady flow increases with AT for H = 10.0 and 20.0 mm. But for H = 30.0 mm the opposite is true and raising Delta T can destabilize the vortex flow. Based on the present data, flow regime maps delineating the temporal state of the flow are provided and correlating equations for the boundaries separating various flow regimes are proposed. (c) 2006 Elsevier Ltd. All rights reserved.
URI: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.08.006
http://hdl.handle.net/11536/11466
ISSN: 0017-9310
DOI: 10.1016/j.ijheatmasstransfer.2006.08.006
Journal: INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
Volume: 49
Issue: 25-26
Begin Page: 4697
End Page: 4711
Appears in Collections:Articles


Files in This Item:

  1. 000242397800001.pdf