標題: CNN-based hybrid-order texture segregation as early vision processing and its implementation on CNN-UM
作者: Lin, Chin-Teng
Huang, Chao-Hui
Chen, Shi-An
電控工程研究所
Institute of Electrical and Control Engineering
關鍵字: cellular neural networks (CNNs);early vision system;Gabor filter;retinex model;texture segregation
公開日期: 1-Oct-2007
摘要: In this paper, a biologically inspired, CNN-based, multi-channel, texture boundary detection technique is presented. The proposed approach is similar to human vision system. The algorithm is simple and straightforward such that it can be implemented on the cellular neural networks (CNNs). CNN contains several important advantages, such as efficient real-time processing capability and feasible very large-scale integration (VLSI) implementation. The proposed algorithm also had been widely tested on synthetic texture images. Those texture images are randomly selected from the Brodatz textures database [1]. According to our simulation results, the boundaries of uniform textures can be detected quite successfully. For the nonuniform or nonregular textures, the results also indicate meaningful properties, and the properties also are consistent to the human visual sensation. The proposed algorithm also has been implemented on the CNN Universal Machine (CNN-UM), and yields similar results as the simulation on the PC. Based on the efficient performance of CNN-UM, the algorithm becomes very fast.
URI: http://dx.doi.org/10.1109/TCSI.2007.905647
http://hdl.handle.net/11536/10255
ISSN: 1549-8328
DOI: 10.1109/TCSI.2007.905647
期刊: IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS
Volume: 54
Issue: 10
起始頁: 2277
結束頁: 2287
Appears in Collections:Articles


Files in This Item:

  1. 000250315100017.pdf