Title: Correlation between photoluminescence and varied growth pressure of well-aligned ZnO nanorods on fused silica substrate
Authors: Yang, Song
Hsu, Hsu-Cheng
Liu, Wei-Ren
Cheng, Hsin-Min
Hsieh, Wen-Feng
Department of Photonics
Keywords: zinc oxide;nanorods;nanowires;photoluminescence;silica;pressure
Issue Date: 1-Nov-2007
Abstract: Well-aligned ZnO nanorods with variable diameters were fabricated on fused silica substrates by the simple physical vapor deposition method with and without pre-deposited NiO particles. The diameter control of ZnO nanorods on the fused silica substrates was achieved by varying the growth pressure. The room-temperature photoluminescence spectra of the ZnO nanorods exhibit strong exciton emission at 3.25 eV that reveals good crystal quality. The exciton emission peak shifts toward 3.22 eV for the samples made at the larger growth pressure that is attributed to the influence of the electron-acceptor-level transition. The ZnO nanorods were examined by high resolution transmission electron microscopy and X-ray diffraction to show single crystal quality and preferentially c-axis alignment. Furthermore, we used scanning electron microscope to verify not only the size but also the growth mechanisms of ZnO nanorods. The results show a ZnO buffer layer formed between the flat top-facet nanorods and the substrate. In comparison with the samples without pre-deposited NiO particles on the substrate, the pre-deposited NiO particles act as nucleation centers for Zn vapor during the deposition process that improves the quality of the buffer layer. (C) 2007 Elsevier B.V. All rights reserved.
URI: http://dx.doi.org/10.1016/j.optmat.2007.01.004
ISSN: 0925-3467
DOI: 10.1016/j.optmat.2007.01.004
Volume: 30
Issue: 3
Begin Page: 502
End Page: 507
Appears in Collections:Articles

Files in This Item:

  1. 000250629500026.pdf