行政院國家科學委員會專題研究計畫成果報告

鍶系稀土離子之多氨基酸配位化學及生物醫學之應用

計畫類別：■個別計畫 整合計畫

計畫編號：NSC 88-2113-M-009-010

執行期間：87年 08月 01日至 88年 12月 31日

個別型計畫：
計畫主持人：張 正
共同主持人：N/A

整合型計畫：
總計畫主持人：N/A
子計畫主持人：N/A

註：整合型計畫總報告與子計畫報告請分開編印各成一冊，彙整一起繳送國科會。

處理方式：可立即對外提供參考
一年候可對外提供參考
■兩年候可對外提供參考
(必要時，本會得展延發表時限)

執行單位：交通大學生物科技研究所

中華民國 89年 03月 29日
中文摘要

本研究計畫為一多年整合基礎與應用研究之長期計畫(1995-2000)，其主要目的是對镧系金屬離子與多氨基酸配位子所形成錯合物之配位化學(熱力學、動力學、光譜學、及結構)作進一步的探討，進而找出影響镧系稀土離子多氨基酸錯合物之物理化學性質（如穩定性、選擇性、反應速率、核磁共振、relaxation 及蛻光性質等）之重要因素，以便能在磁振造影劑、生物分子之蛻光附著劑及切斷 RNA 及 DNA 反應之催化劑等有所應用。計劃執行成果要點包括：

(1) 實驗室之建立、儀器之購買、及研究人員之招攬、訓練。

(2) 大環多氨基酸配位子(R-DO3A)的合成、特性研究 (NMR、IR、電化學)、及鈷土金屬離子 R-DO3A 錯合物的穩定常數及選擇性之研究。J.C.S. Dalton Trans. 1996, 2347-2350。


(5) 毛細管電泳測定金屬離子多氨基酸配位子錯合物穩定常數方法之開發。J. Chin. Chem. Soc. (Taipei), 1999, 46, 519-528。

(6) 鎖系稀土離子多氨基酸配位子(DO2A)錯合物之NMR及蛻光光譜的特性研究。J. C. S. Dalton Trans., 1998, 3243-3248。

(7) 過渡金屬離子與線性多氨基酸配位子錯合物穩定常數及選擇性之研究。J. Chin. Chem. Soc. (Taipei), 1998, 45, 753-759。

Abstract

This research project is a long-term one integrating both fundamental and applied aspects of lanthanide coordination chemistry (1995-2000). The primary objective of the proposed research is to develop fundamental understanding of the key thermodynamic, kinetic, and structural factors that influence the desired physico-chemical properties of lanthanide complexes of macrocyclic and linear polyaminocarboxylate ligands (e.g., complex formation stability and selectivity, reaction kinetics, NMR relaxation, luminescence, and structure) for applications in magnetic resonance imaging (MRI), luminescence labeling for biomolecules and catalysis for DNA and RNA phosphate diester bond cleavage. The research results include the following:

1. Construction of research laboratories, purchasing equipment, and personnel recruitment.
7. Effects of Chain Length and Terminal N-alkylation on the Protonation Constants and


Keywords: Polyaminocarboxylates, Lanthanides Complexes, Macrocyclic and Linear Ligands, Stability Constants, Selectivity, Formation and Dissociation Kinetics, Structure, Luminescence, NMR, Molecular Mechanics.
Outline

A. Introduction
B. Ligand/Complex Synthesis and Physical Characterizations, Thermodynamics and Kinetics, Molecular Mechanics Calculations
C. Thesis Supervised
D. Publications
E. Meetings and Abstracts
F. Questions still to be Answered
G. Ln-DO2A Dissociation Kinetics Studies – Initial Report
A. Introduction

This is a research program that has been performed for almost five years (from February 1, 1995 to December 31, 1999). Because the Institute of Biological Science and Technology of National Chiao Tung University is a new research institute, we spent most of the first year to establish our laboratories. This includes renovating laboratory, recruiting postdoctoral research fellows (Dr. Liu, Yuh-Liang, 劉育良; Dr. Chen, Chang-Yuh, 陳承裕; Dr. Huang, Chiung-Hua, 賴煒華), research assistants and graduate students (陳煒源, 陳玉衡, 林穎桓, 謝發坤, 萬嘉, 潘美蓉, 李亮緯, 許呈安, 林孟嘉, 管飾雪, 許憶利, 張志杰, 未婉真, 陳家銘, 陳桂添, 郭珍佑, 曾繼鋒, 羅千婷), purchasing chemicals and research equipment (automatic titroprocessor, stopped-flow uv-vis spectrophotometer, diode-array uv-vis spectrophotometer, PCR, capillary and gel electrophoresis apparatus), and setting up softwares and hardwares. On the other hand, we have made considerable research progress as originally proposed. The progress in terms of ligand/complex synthesis, physical characterizations, thermodynamics, kinetics, and molecular mechanics calculations shall be briefly discussed as follows:

B. Ligand/Complex Synthesis and Physical Characterizations, Thermodynamics, Kinetics, and Molecular Mechanics Calculations

We have synthesized the 12-membered and 14-membered tetraaza macrocycles, cyclen and cyclam - the precursors of DOTA and TETA, according to published methods. Carboxymethylation reactions have been carried out with the tetraaza macrocycles and the resulting DOTA and TETA compounds were purified and recrystallized. DOTA and Cube-like TETA crystals have been obtained. The rates of formation and dissociation reactions of Ce(DOTA)- and Ce(TETA)- have been repeatedly determined at various temperatures and pH. The detailed analysis of these rate data has been completed. The ligand, K21DA, has also been synthesized according to published method.

The ligand, 1,7-dicarboxymethyl-1,4,7,10-tetraazacyclododecane (DO2A), has been synthesized and the macrocycle ring protonation sites have been determined by NMR.
techniques to be the secondary amine nitrogen atoms. The protonation constants (log K: 10.48, 10.01, 3.85, 2.55) and the stability constants of trivalent lanthanide (Ln$^{3+}$) metal complexes of DO2A (log KML: 10.94-13.31) were determined by the potentiometric pH titration and capillary electrophoresis methods, respectively. In general, the stabilities of the Ln(DO2A)$^+$ complexes increase with increasing atomic number for the lighter lanthanides (La$^{3+}$ - Sm$^{3+}$) and remain relatively unchanged for the heavier lanthanides (Eu$^{3+}$ - Lu$^{3+}$).

Laser-excited spectroscopy of the $^7F_o \rightarrow ^5D_o$ transition of Eu$^{3+}$ is used to study the aqueous Eu$^{3+}$ - DO2A complex system. At low pH (e.g. pH 5 ~ 6), Eu$^{3+}$ forms a 1:1 species with the ligand DO2A, presumably Eu(DO2A)(H$_2$O)$^+$, where q is the number of inner-sphere coordinated water molecules. As the solution pH increases, the hydrolysis product, Eu(DO2A)(OH)(H$_2$O)$^+$, is formed. Lifetime measurements of each species in H$_2$O and D$_2$O allow the determination of the corresponding number of the inner-sphere coordinated water molecules to be 2.96 and 2.64, consistent with the proposed structures (i.e. q = 3). The hydrolysis constant (pK$_h$) is estimated to be 8.1±0.3. These results were reproducibly obtained by different researchers.

The use of Eu(DO2A)$^+$ and Eu(K21DA)$^+$ complexes to catalyze the hydrolysis of phosphate ester bond has been tested. Initial results indicated that both complexes are active in this regard. Detailed studies are underway.

The determination of ligand protonation constants and stability constants of metal complexes of several linear polyamine ligands has been of interest because of the continued desire of making metal-selective reagents and use of data as reference to understand the thermodynamic origin of “macrocyclic effect”. A number of terminal N-alkylated linear tetraaza and pentaaza ligands have been prepared, e.g. (2,2,2), (2,3,2), (3,2,3), etc. Their ligand protonation constants and some transition and post-transition metal (Ni$^{2+}$, Cu$^{2+}$, Zn$^{2+}$, and Cd$^{2+}$) complex stability constants have been determined by potentiometric titration methods. In general, methylation and ethylation at the terminal nitrogen atoms cause the corresponding ligand nitrogen basicity to increase; however, the corresponding metal complex stabilities are decreased as compared to the non-alkylated structural analogs, presumably due to the steric effect.
The linear polyamines, the precursors for the 15-membered pentaaza macrocycles, 1,4,7,10,13-pentaazapentadecane (2.2.2.2) and its structural analogue (2.2.3.2.) have been synthesized according to methods established by Dr. Liu, Yuh-Liang. The two linear polyamines will be used to carry out cyclization and carboxymethylation reactions as proposed.

To design ligands with fast complex formation rates for a number of applications such as solvent extraction and diagnostic imaging agent manufacturing, we have decided to synthesize linear aminopolycarboxylate ligands selective toward lanthanide metals ions. Thus, polyamines (2.2.2.), (2.3.2.), (3.2.3.), (3.3.3.), (2.2.2.2.) and (2.2.3.2) with different cumulative backbone ring strain have been prepared with methylation or ethylation to replace one proton of each terminal amine functional group. We are currently carrying out the carboxymethylation reactions to prepare the corresponding aminopolycarboxylic acids. (PI Note: Due to the unexpected resignation of my postdoctoral fellows, Dr. Chin, Kwei-Chiang and Dr. Huang, Chiung-Hua, the synthetic and other characterization work has been delayed.)

For comparison purpose, 4,8-dicarboxymethyl-1,4,8,11-tetraazaundecane has also been prepared.

The origin of the differences of the thermodynamic stability and kinetic lability of two structurally similar complexes, Ln(DOTA)\(^-\) and Ln(TETA)\(^-\), have been studied by molecular mechanics techniques, e.g. \(\log K_{\text{f,GdDOTA}} = 25.3\) and \(\log K_{\text{f,GdTETA}} = 14.7\); and kinetically, Ln(DOTA)\(^-\) is faster to form and slower to dissociate as compared to Ln(TETA)\(^-\). Previous structural characterizations showed that DOTA is preorganized for metal ion complexation while TETA is not. The initial molecular mechanics study results showed that Ln-DOTA complexation involves the formation of a carboxylate oxygen-bonded precursor, followed by metal ion moving into the pre-formed macrocyclic cavity. However, at least two carboxylate oxygen-bonded intermediates exist for Ln(TETA)\(^-\) complex formation and lanthanide ion assisted reorganization of the TETA ligand is observed.

Excitation spectroscopy (emission monitored at 614.0 nm) of the \(^7F_0 \rightarrow ^5D_0\) transition of Eu\(^{3+}\) was used to study the aqueous properties of the Eu\(^{3+}\)-TETA system. A stopped-flow
spectrophotometric method was used to study the formation kinetics of the aqueous Ce$^{3+}$-TETA/DOTA systems. The results showed that the complexation reaction between Eu$^{3+}$ and H$_2$TETA$^{2-}$ to form Eu(TETA)$^-$ is completed within 10-15 minutes at pH 6.1 and higher pH. The measured rate constants for the reaction between Ce$^{3+}$ and H$_2$TETA$^{2-}$ to form Ce(TETA)$^-$. revealed that the rate is faster at higher solution pH. The reaction activation parameters, $\Delta H^*$, $\Delta S^*$ and $\Delta G^*$, measured at different pH decrease with increasing pH indicating the rate determining step could be the loss of ligand proton(s) and followed by metal ion moving into the macrocyclic cavity. The positive $\Delta S^*$ value indicates that the rate determining step is dissociative in nature, consistent with the proposed mechanism.

The acid-catalyzed dissociation rate constants of the cerium(III) complexes of 1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetraacetic acid (TETA) and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) have been determined at four different temperatures (i.e. 25.0°C, 32.0°C, 39.0°C, 45.0°C) in aqueous media ($\mu = 0.10 M$, HCl/KCl) to obtain additional kinetic data and to evaluate possible effects of ligand pre-organization for metal ion complexation. The rates are much faster for Ce(TETA)$^-$ than for Ce(DOTA)$^-$, indicating the lower thermodynamic stability of the former. In the presence of excess strong acid, 0.1 - 1.0 M HCl, the dissociation reactions follow the rate law: $-d[ML]T/dt = (k_d + k_{H^+}[H^+])[ML]_T$ and $-d[ML]T/dt = (k_{H^+}[H^+] + k_{H^2}[H^+]^2)[ML]_T$, respectively, where $k_d$ is acid-independent dissociation reaction rate constant and $k_{H^+}$ and $k_{H^2+}$ are the respective dissociation rate constants for the pathways involving monoprotonated and diprotonated species. The rate activation parameters, $\Delta H^+$, $\Delta S^+$ and $\Delta G^+$, for each dissociation pathway have been obtained and their values are consistent with the proposed mechanisms. In particular, the rate difference between Ce(TETA)$^-$ and Ce(DOTA)$^-$ for the monoprotonated complex dissociation pathway is mainly due to difference in $\Delta H_{H^+}$. It has been concluded that ligand pre-organization results in more stable complexes and slower complex dissociation rates.

A new method for the determination of stability constants by capillary electrophoresis has been developed, particularly for kinetically inert metal complexes. Different approaches,
i.e., direct formation, ligand exchange, metal exchange and metal-ligand double exchange were studied. Stability constants of lanthanide (La$^{3+}$, Ce$^{3+}$, Eu$^{3+}$ and Yb$^{3+}$) and transition metal (Ni$^{2+}$, Cu$^{2+}$ and Zn$^{2+}$) ions with DO2A (1,7-dicarboxymethyl-1,4,7,10-tetraazacyclododecane) were measured under direct complex formation. In ligand exchange approach, stability constants were measured by complex formation of Ni$^{2+}$ with DO2A and Et$_2$-2,3,2-tet (3,6,10,13-tetraazaundecane). Stability constants of DO2A with Cu$^{2+}$ and Zn$^{2+}$ complexes were measured in metal exchange approach. Complex formation competitions of Ni$^{2+}$ and Cu$^{2+}$ between DO2A and Et$_2$-2,3,2-tet were studied in metal-ligand double exchange.

To verify the capillary electrophoresis method, we have also determined the stability constant of a known metal complex system, i.e. Cu$^{2+}$/Zn$^{2+}$-EDTA/HEDTA (N-hydroxyethyl-ethylenediaminetriacetic acid), using the metal-ligand double exchange approach. Assuming that the stability constants of CuEDTA$^2-$, ZnEDTA$^2-$, and ZnHEDTA$^-$ are known, the stability constant of CuHEDTA$^-$ has been redetermined to be logKf = 17.47 ± 0.20, consistent with the literature reported value 17.50. The criteria for proper selection of this metal-ligand double exchange approach and experimental conditions as well as the feasibility for future applications of this method are noted.

The dissociation kinetics of the complexes of nickel(II), zinc(II), and cadmium(II) of 1,7-diaza-4,10,13-trioxacyclopentadecane-N,N'-diacetic acid (K21DA) and 1,10-diaza-4,7,13,16-tetraoxacyclooctadecane-N,N'-diacetic Acid (K22DA) were studied in constant ionic strength aqueous medium with various $[H^+]$-range, i.e., (0.88-53.9) x 10^{-5} M and (0.5-7.5) x 10^{-3} M. Copper(II) was used as the scavenger of free ligand and the rates of dissociation of these complexes have been found to be independent of $[Cu^{2+}]$. All the complexes exhibit acid-independent and acid-dependent pathways. For NiK21DA, CdK21DA and CdK22DA complexes, the acid-dependent rates are linear functions of $[H^+]$. For NiK22DA and ZnK21DA complexes, a saturation kinetics is observed, i.e., $[H^+]$ dependence at low $[H^+]$ and $[H^+]$-independent at high $[H^+]$. The rationalization of such different observations is proposed to be due to difference in complex solution structures rather than the thermodynamic stabilities.
the rate of dissociation has also been investigated and discussed. For detailed description of each paper and new research progress, please see the presentations listed in the Appendix.

Additional studies have been on the following topics which are related to biological chemistry, molecular biology and biotechnology: (1) The Preparation and Applications of Porcine C1q and the C1q-like Peptides, (2) Study of the Differential Gene Expression in Human Gastric Cells Infected with Helicobacter pylori, (3) Study of Genes Expression in Colorectal Adenocarcinoma by DDRT-PCR Method, (4) The Use of Piezoelectric Crystal Sensor for the Diagnosis of Human Helicobacter Pylori, and (5) Purification and Characterization of Neutral Sphingomyelinase from *Helicobacter pylori*. A total of thirteen master theses have also been completed. Papers related to the above studies are now been written for publication.

C. Thesis Supervised

<table>
<thead>
<tr>
<th>學位</th>
<th>學生姓名</th>
<th>論文題目</th>
<th>畢業時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>謝發坤</td>
<td>多胺與多乙酸基配位子與金屬離子錯合物穩定常數研究 The Stability Constants Studies of Metal Ion Complexes of Polyamines &amp; Polyamino Polycarboxylates</td>
<td>85.06</td>
</tr>
<tr>
<td>2.</td>
<td>郭永斌</td>
<td>豬源補體蛋白 C1q 的純化及定性與定量之研究 The Purification and Characterization of Complement C1q From Swine</td>
<td>85.06</td>
</tr>
<tr>
<td>3.</td>
<td>萬磊</td>
<td>幽門螺旋桿菌感染為組織細胞所引發基因差異表現之研究 Study of the Differential Gene Expression in Human Gastric Cells Infected with <em>Helicobacter pylori</em></td>
<td>86.06</td>
</tr>
<tr>
<td>4.</td>
<td>潘美蓉</td>
<td>豬源補體蛋白 C1q 之製備與其類 peptide 應用之研究 The Preparation and Applications of Porcine C1q and The C1q-like Peptide</td>
<td>86.06</td>
</tr>
<tr>
<td>5.</td>
<td>李亮緯</td>
<td>結腸直腸癌基因差別表現之研究 Study of Genes Expression in Colorectal Adenocarcinoma by DDRT-PCR Method</td>
<td>86.06</td>
</tr>
<tr>
<td>6.</td>
<td>許呈安</td>
<td>甲狀腺腫瘤標記之研究 Study of Genes Expression in Colorectal Adenocarcinoma by DDRT-PCR Method</td>
<td>87.06</td>
</tr>
<tr>
<td>7.</td>
<td>鄭昇沛</td>
<td>壓電晶體免疫感測器於醫療檢驗之應用 Study of Genes Expression in Colorectal Adenocarcinoma by DDRT-PCR Method</td>
<td>87.06</td>
</tr>
<tr>
<td>No.</td>
<td>Degree</td>
<td>Name</td>
<td>Title</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>------</td>
<td>----------------------------------------------------------------------</td>
</tr>
<tr>
<td>8.</td>
<td>M.S.</td>
<td>謝明宏</td>
<td>固定細胞生產和回收溶葡萄球菌素之研究 Study of the in situ recovery of lysostaphin by immobilized recombinant cells</td>
</tr>
<tr>
<td>9.</td>
<td>M.S.</td>
<td>管佈雲</td>
<td>鐵系金屬與大環配位子錯合物切割磷酸二酯與去氧核酸核酸動力學及催化效力之研究 Kinetic &amp; Catalytic Activity Study of Lanthanide Complex of DO2A &amp; K21DA in Phosphate Diester &amp; DNA Hydrolysis</td>
</tr>
<tr>
<td>10.</td>
<td>M.S.</td>
<td>張永立</td>
<td>台灣醫療儀器產業環境與市場競爭策略</td>
</tr>
<tr>
<td>11.</td>
<td>M.S.</td>
<td>林孟嘉</td>
<td>The expression of human placental lactogen by E. coli expression system</td>
</tr>
<tr>
<td>12.</td>
<td>M.S.</td>
<td>許地利</td>
<td>大腸直腸分子標識之研究 Study of the bio-molecular markers in colorectal cancers</td>
</tr>
<tr>
<td>13.</td>
<td>M.S.</td>
<td>張至杰</td>
<td>幽門螺旋桿菌之膜蛋白—硝酸酸酵素之定性定量 Identification and Characterization the Sphingomyelinage of Helicobacter pylori</td>
</tr>
<tr>
<td>14.</td>
<td>M.S.</td>
<td>陳家翎</td>
<td>稀土配位化合物之 DNA/RNA 切割劑</td>
</tr>
<tr>
<td>15.</td>
<td>M.S.</td>
<td>宋婉貞</td>
<td>自體免疫試劑開發</td>
</tr>
<tr>
<td>16.</td>
<td>Ph.D.</td>
<td>陳桂添</td>
<td>甲狀腺腫瘤分子標識之研究</td>
</tr>
<tr>
<td>17.</td>
<td>Ph.D.</td>
<td>鄭珍佑</td>
<td>免疫試劑開發</td>
</tr>
</tbody>
</table>
D. Publications


E. **Meetings Abstracts and Presentations**


11. L. Wan, M.-Y. Lue, **C.A. Chang**, Y.-L. Lin, and E.-C. Chan. "*Helicobacter Pylori* Induced Genes Expression in Human Gastric Cells Identified by mRNA Differential..."


Meeting of the Chinese Chemical Society (Taipei), Chia-Yi, Taiwan, November 27-29, 1998.


In addition to the above mentioned publications, abstracts and meetings, the PI has been invited by various institutions to present seminars for more than 60 times for the last 5 years.
F. Questions still to be Answered:
1. Are there novel ligands (linear or macrocyclic) that form lanthanide complexes with good thermodynamic stability and selectivity as well as favorable kinetic properties (e.g. fast to form and slow to dissociate)?
2. What are the thermodynamic and kinetic features of “ligand preorganization for metal ion complexation”?
3. Can we design stable and cationic lanthanide complexes that could catalyze the hydrolysis of the phosphate diester bond of DNA and RNA molecules?
4. Can some of the simple linear and macrocyclic lanthanide complexes be linked to peptides or nucleotides for drug targeting or sequence-specific DNA/RNA phosphate ester bond cleavage?

These questions will be answered by the experiments proposed for the next two years.

G. 鑫系金属大环多胺多酸基配位子螯合物(Ln-DO2A)之解離動力學研究-初步報告

G-1 藥品與儀器

Lanthanum(III) nitrate hydrate, Cerium(III) nitrate hydrate, Praseodymium(III) nitrate hydrate, Neodymium(III) nitrate hydrate, Europium(III) nitrate hydrate, Gadolinium(III) nitrate hydrate 皆為 Aldrich G.R 級試藥，Disodium Ethylenediamine Tetraacetic Acid（Na₂H₂EDTA）為 Merck G.R 級試藥，Calcium Carbonate (CaCO₃) 為 Merck G.R 級試藥，NH₃-NH₄Cl・pH9.5-10 為 Merck G.R 級試藥，Lithium perchlorate 為 Aldrich A.C.S 級試藥，Perchloric acid 為 Riedel-deHaen A.C.S 級試藥，Cresol red 為 Merck G.R 級試藥，Xylenol orange Tetrasodium Salt 為 Merck G.R 級試藥，C₆H₇COOH-NaOH 為 Merck G.R 級試藥，Eriochrome Black T 為 Merck G.R 級試藥，Tris(hydroxymethyl)aminomethane (THAM) 為 Merck G.R 級試藥，DO2A 則參見第三章合成部分所述，UV-Visible (HP 8453 型)，恆溫循環水槽（FIRSTEK SCIENTIFIC B403 型）。

G-2 溶液濃度的標定
G-2-1 Na₂H₂EDTA 的標定

將置於 100 烘箱內 2-3 小時的 CaCO₃ 1.01g 置入 100ml 的定量瓶內，再利用滴管取數滴 HCl(12N) 將 CaCO₃ 漸漸溶解，此時會產生 CO₂ 氣體，直到溶液澄清後稀釋至 100ml 即得到 0.1M 的 CaCO₃。取 50ml 的燒杯數個，依序分別將 0.1M 的 Na₂H₂EDTA Stock solution 2-3ml 加入，在加入指示劑 Eriochrome Black T 1-2 滴，並稀釋至 10-15ml。以配製好的 CaCO₃ 來滴定，滴定開始時顏色為蓝色，滴定終點時顏色則轉為粉紅色，重複數次後求濃度及標準偏差。

G-2-2 金屬溶液濃度的標定

取 50ml 的燒杯數個，依序分別加入配製好的 0.01M Ln³⁺ Stock solution 2-3ml，指示劑 Xylenol orange 1-2 滴，並稀釋至 10-15ml。以 Na₂H₂EDTA 來進行滴定，滴定開始時顏色為蓝色，而滴定終點時顏色則轉為橘紅色，重複數次之後即可求出濃度及標準偏差。

G-2-3 酸溶液濃度的標定

取 50ml 的燒杯數個，依序分別加入配製好的 0.05M 過氯酸(perchloric acid)溶液 2-3ml，指示劑 Bromothymol blue 1-2 滴，並稀釋至 10-15ml。以一級標準溶液 (primary standard) 0.1M 的 THAM 來進行滴定，滴定開始時溶液顏色為紫色，而滴定終點時顏色則轉為藍色，重複數次之後即可求出濃度及標準偏差。

G-3 金屬錯合物水溶液的配製

將標定好的鋼系金屬離子水溶液和配位子水溶液以摩耳數 1:1.01 的比例混合，置於小樣本瓶中，調整 pH 值，使 pH 值在 6-7 之間，再將 0.1M 離子強度劑 (LiClO₄) 加入，使之攪拌超過 24 小時以確定金屬離子與配位子皆以完全形成錯合物。

G-4 動力學計算原理

在化學反應中，能用最簡單數學式分析的動力學反應，就是 A 物質發生自發且不可逆的分解反應。
\[ A \underset{k}{\rightarrow} P \]

對 A 而言此反應為一級反應。

\[
\text{Rate} = -d[A]/dt = k[A]
\]

一個一級分裂反應對分析化學而言沒有什麼用處，因為分析至少要包含兩個物質 Analyte 和 Reagent。然而，包含兩個物質的反應，在速率定律中又常常因為太複雜而使得無法達到分析的目的一所。所以在動力學終將複雜的速率定律簡化成類似一級反應的方式，使化學家所普遍採用的。將高級數（Order）的反應簡化成擬似一級反應，以便於分析的反應即稱為 pseudo-first order。在一典型的反應中，1 mol 的 A 物質和 1 mol 的 B 物質反應產生單一產物 p，假設反應為不可逆，則反應式如下：

\[ A + B \underset{k}{\rightarrow} P \]

如果反應是一步的反應，則反應速率會和個別物種的濃度成正比，即寫成

\[
-d[A]/dt = k[A][B]
\]

這個反應對個別物質是一級的反應，對整個反應而言則是二級的反應。假設將 B 的濃度放大使[B] >> [A]，則在反應中 B 物質的濃度改變非常微小幾乎不變，我們就能將 \( k[B] \) 常數 = \( k' \) 帶入上式而將上式改寫成

\[
-d[A]/dt = k'[A]
\]

如此便將反應用一級的方式呈現出來，對 A 而言此即為 pseudo-first order 反應。在我們設計的實驗中，我們將酸的濃度訂為錳系金屬錯合物溶液濃度的十倍以上，再進行酸解的反應，這樣所得的結果也就能符合擬一級反應的條件了。

G-5 實驗步驟

將六種錳系金屬錯合物水溶液分別和不同濃度的過氯酸混合之後，在 25°C、31°C、37°C、45°C 下反應，在 250nm 下觀察其反應的變化，以 UV-visible 儀求出其反應速率常數(\( k_{obs} \))。

\[
A_t = A_w + (A_o - A_w)\exp(-k_{obs}t)
\]
Table 1. Kinetic Data \(10^3 k_{obs} \text{ s}^{-1}\) for the \(H^+\)-catalyzed Dissociation of Lanthanide DO2A Complexes.

<table>
<thead>
<tr>
<th>Metal</th>
<th>(T) (°C)</th>
<th>(10^3<a href="%5Ctext%7BM%7D">H^+</a>)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5769</td>
</tr>
<tr>
<td>La</td>
<td>25</td>
<td>5.0033</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>6.941</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>8.023</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>13.712</td>
</tr>
<tr>
<td>Ce</td>
<td>25</td>
<td>4.480</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>6.9202</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>10.7365</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>14.581</td>
</tr>
<tr>
<td>Eu</td>
<td>25</td>
<td>0.041922</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>0.3763</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>0.7173</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>1.0640</td>
</tr>
<tr>
<td>Gd</td>
<td>25</td>
<td>0.23807</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>0.41326</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>1.1500</td>
</tr>
<tr>
<td>Lu</td>
<td>25</td>
<td>0.15200</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>0.3380</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>0.4410</td>
</tr>
</tbody>
</table>
Table 2. Kinetic Data \( \left( 10^3 k_{obs}, s^{-1} \right) \) for the \( H^+ \)-catalyzed Dissociation of Lanthanide DO2A Complexes.

<table>
<thead>
<tr>
<th>Metal</th>
<th>T (°C)</th>
<th>( 10^3 [H^+] ) (M)</th>
<th>1.1538</th>
<th>2.3077</th>
<th>3.4615</th>
<th>4.6154</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pr</td>
<td>25</td>
<td>6.718</td>
<td>9.700</td>
<td>16.700</td>
<td>24.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>8.401</td>
<td>14.413</td>
<td>25.546</td>
<td>32.700</td>
<td></td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>13.600</td>
<td>24.202</td>
<td>39.800</td>
<td>58.855</td>
<td></td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>24.000</td>
<td>43.500</td>
<td>68.000</td>
<td>91.300</td>
<td></td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>10.400</td>
<td>19.200</td>
<td>27.704</td>
<td>34.034</td>
<td></td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>15.222</td>
<td>28.950</td>
<td>40.000</td>
<td>62.395</td>
<td></td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>18.400</td>
<td>40.400</td>
<td>63.700</td>
<td>85.003</td>
<td></td>
</tr>
</tbody>
</table>

\([\text{PrDO2A}] = [\text{NdDO2A}] = 1.07692 \times 10^{-3} \text{M}, \ \ \ \ \rightarrow = 0.10 \text{M (LiClO}_4)\).
應，且 $k_{obs}$ 值與酸濃度（$H^+$）作圖呈線性，如圖一所示，因此我們可推測其反應速率的公式如下：

$$k_{obs} = k_d + k_H[H^+]$$

其式子中的 $k_d$ 為酸-independent rate constant，即不加入酸時，其錯合物自行解離（self-dissociation）的速率常數；而 $k_H$ 則為經由專酸催化解離的速率常數(acid-catalyzed rate constant)。

並且經由上述式子運算之後，我們即可得到在不同溫度下镧系金屬與 DO2A 的 $k_d$ 和 $k_H$ 值。但是求出的 $k_d$ 值非常小，所以在誤差的範圍內，我們可將其視為零，而最後求得的 $k_H$ 值見表三所示。

<table>
<thead>
<tr>
<th></th>
<th>T(℃)</th>
<th>$k_H$</th>
</tr>
</thead>
<tbody>
<tr>
<td>LaDO2A</td>
<td>25</td>
<td>0.5764717</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>0.7368335</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>1.3620173</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>1.9706823</td>
</tr>
<tr>
<td>CeDO2A</td>
<td>25</td>
<td>0.6098330</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>1.0322590</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>1.5104310</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>2.0433520</td>
</tr>
<tr>
<td>PrDO2A</td>
<td>25</td>
<td>0.4975187</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>0.7068086</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>1.2041582</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>1.9650222</td>
</tr>
<tr>
<td>NdDO2A</td>
<td>25</td>
<td>0.4566368</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>0.7743609</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>1.3049169</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>1.8220222</td>
</tr>
<tr>
<td>EuDO2A</td>
<td>25</td>
<td>0.0174167</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>0.0838560</td>
</tr>
<tr>
<td>------------------</td>
<td>------</td>
<td>-----------</td>
</tr>
<tr>
<td>GdDO2A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.0127947</td>
</tr>
<tr>
<td>LuDO2A</td>
<td>25</td>
<td>0.0008497</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>0.1056778</td>
</tr>
</tbody>
</table>

G-7 Activated Parameter 的计算

由 G-6 中所求出变温条件下的 $k_h$ 值，我们还可根据以下的公式求出各个镧系金属与 DO2A 酯合物的活化参数（Activated parameter），见表四所示。

\[
\ln \left( \frac{k}{T} \right) = \ln \left( \frac{k_h}{h} \right) - \frac{\Delta H^*}{RT} + \frac{\Delta S^*}{R}
\]

其中 $R$ 为气态常数 (1.98716 cal·mol⁻¹K⁻¹), $k_h$ 为波兹曼常数 (Boltzmann’s constant, 1.381 ×10⁻²³ JK⁻¹), 而 $h$ 为普朗克常数 (Planck’s constant, 6.626×10⁻¹⁴ J·s)。

<table>
<thead>
<tr>
<th></th>
<th>$-H^*(\text{kcal/mol})$</th>
<th>$-S^*(\text{e.u.})$</th>
<th>$-G^*(\text{kcal/mol})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>LaDO2A</td>
<td>9.8883963</td>
<td>-25.125355</td>
<td>17.375752</td>
</tr>
<tr>
<td>CeDO2A</td>
<td>10.728910</td>
<td>-23.356407</td>
<td>17.689119</td>
</tr>
<tr>
<td>PrDO2A</td>
<td>13.294210</td>
<td>-15.469880</td>
<td>17.903160</td>
</tr>
<tr>
<td>NdDO2A</td>
<td>15.457376</td>
<td>-8.226310</td>
<td>17.908816</td>
</tr>
<tr>
<td>EuDO2A</td>
<td>27.120197</td>
<td>25.000947</td>
<td>19.667375</td>
</tr>
<tr>
<td>GdDO2A</td>
<td>27.055696</td>
<td>24.065672</td>
<td>19.884126</td>
</tr>
</tbody>
</table>
由 \( \ln(k_{\text{obs}}/T) \) 作圖之後，所得到的斜率及截距即可求出熵 \( \Delta H^* \) 和變度 \( \Delta S^* \)，再由以下的公式又可求出於室溫（25°C）下的自由能 \( \Delta G^* \)，如表四所示。

G-8 結果討論

由於熱力學穩定常熟高的金屬錯合物，其解離的速率會相對地變慢，而根據以往的文獻整理所得到的錯合物和大環配位子之穩定常數來看，可得知錯合物及金屬的穩定常數之順序為 Ln(DOTA) > Ln(DO3A) > Ln(DO2A)\(^+\)，且 12,15,18 圓環配位子與金屬形成錯合物後，其穩定常數的順序為 Ln(DO2A)\(^+\) > Ln(K22DA)\(^+\) > Ln(K21DA)\(^+\)。這是由於 K22DA 與 K21DA 比起 12 圓環的 DO2A 有著較高的 size effect，並且 DO2A 的鹼性較這兩個配位子高，因此推測我們的 Ln(DO2A)\(^+\) 的解離常數應介於 Ln(DOTA)\(^-\)，Ln(DO3A) 與 Ln(K22DA)\(^+\)，Ln(K21DA)\(^+\)之間。

由前面所作的幾個圖表中，我們可得到以下幾個結論:
1. 由每一個錯合物 LnDO2A 之解離常數 \( k_{\text{obs}} \) 與酸濃度 \([H^+]\) 作圖之後，所得到的圖形呈現一個線性的關係，這表示了 LnDO2A 與酸作用之後所形成的中間體 LnHDO2A 與其他大環分子，例如 DOTA 或 DO3A 比較起來不是那麼的穩定，因此可推知反應進行當中一旦形成中間體之後會很快速的繼續進行解離。
2. 以我們所作的七種金屬和 DO2A 所形成的金屬錯合物之解離常數 \( k_{\text{obs}} \) 值來比較，會發現其解離速率的快慢順序為 LaDO2A > CeDO2A > PrDO2A > NdDO2A > EuDO2A > GdDO2A > LuDO2A，而此順序和金屬的離子半徑 (ion size) 的減少及電荷密度 (charge density) 的增加有絕對的關係。
3. 由所求得的自行解離常數與酸催化解離常數來看，我們可發現因為其自行解離常數的值非常的低，幾乎趨近於零，因此，LnDO2A 的解離反應是不會經由自行解離的途徑的，必須一定要加入酸時才會進行解離的反應，由此，我們也可印證吾人所設計的大環配位子與錯合金屬錯合物 LnDO2A 的穩定性是相當高的。

<table>
<thead>
<tr>
<th>LuDO2A</th>
<th>27.440482</th>
<th>23.332768</th>
<th>20.487317</th>
</tr>
</thead>
</table>
$\ln(\frac{v_{b1,T}}{T})$ vs. $\frac{1}{T}$
Dissociation of EuDO2A

<table>
<thead>
<tr>
<th>$[\text{H}^+]$ (M)</th>
<th>$k_{\text{obs}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>0.004</td>
<td>0.004</td>
</tr>
<tr>
<td>0.006</td>
<td>0.006</td>
</tr>
<tr>
<td>0.008</td>
<td>0.008</td>
</tr>
<tr>
<td>0.010</td>
<td>0.010</td>
</tr>
<tr>
<td>0.012</td>
<td>0.012</td>
</tr>
<tr>
<td>0.014</td>
<td>0.014</td>
</tr>
<tr>
<td>0.016</td>
<td>0.016</td>
</tr>
<tr>
<td>0.018</td>
<td>0.018</td>
</tr>
<tr>
<td>0.020</td>
<td>0.020</td>
</tr>
</tbody>
</table>

Temperature:
- 25°C
- 31°C
- 37°C
- 45°C
Dissociation of LaDO2A

\[ \text{[H}^+\text{]} \times \text{[M]} = \text{K}_{\text{obs}} \]

\[ \text{K}_{\text{obs}} \] at different temperatures:
- 25°C
- 31°C
- 37°C
- 45°C

\[ \begin{array}{cccccc}
0.00 & 0.01 & 0.02 & 0.03 & 0.04 & 0.05 \\
0.00 & 0.01 & 0.02 & 0.03 & 0.04 & 0.05 \\
0.00 & 0.01 & 0.02 & 0.03 & 0.04 & 0.05 \\
0.00 & 0.01 & 0.02 & 0.03 & 0.04 & 0.05 \\
\end{array} \]
\ln \left( \frac{k_{\text{obs}}}{T} \right) \text{ vs. } \frac{1}{T}
Dissociation of LuDO2A

$k_{obs}$ vs. $[H^+]$ (M)

- 25°C
- 31°C
- 37°C
- 45°C
\[ \ln \left( \frac{k_{obs}}{T} \right) \] vs. \[ \frac{1}{T} \]
Dissociation of NdDO2A

$K_{\text{obs}}$ vs. $[H^+]$ (M)

Temperatures:
- 25°C
- 31°C
- 37°C
- 45°C
\[ \ln\left(\frac{K_{\text{obs}}}{T}\right) = -9 \times 10^{-8} \times \frac{1}{T} \]
Dissociation of PrDO2A

![Graph showing dissociation of PrDO2A](image)

The graph plots $K_{b,obs}$ against $[H^+]$ (M) for different temperatures: 31°C, 37°C, 45°C, and 25°C. The data points are connected by lines indicating the increase in $K_{b,obs}$ with increasing $[H^+]$. The y-axis represents $K_{b,obs}$, and the x-axis represents $[H^+]$ (M).
\[ \ln \left( \frac{k_{\text{obs}}}{T} \right) \] vs. \[ \frac{1}{T} \]
Dissociation of GdDO2A

\[ \text{Dissociation of GdDO2A} \]

\[ [\text{H}^+] (M) \]

\[ k_{\text{obs}} \]

\[ 0.000 \quad 0.005 \quad 0.010 \quad 0.015 \quad 0.020 \quad 0.025 \quad 0.030 \quad 0.035 \quad 0.040 \]

\[ 25^\circ C \quad 37^\circ C \quad 45^\circ C \]
\ln \left( \frac{k_{obs}}{T} \right)