行政院國家科學委員會補助專題研究計畫成果報告

中學生資訊科技之網路學習與評量系統之研究

子計畫二: 網路化創造性學習環境之可行性研究 (3/3)

計畫類別：□ 個別型計畫     整合型計畫
計畫編號： NSC - 89 - 2520 - S - 009 - 011
執行期間： 89 年 8 月 1 日至 90 年 7 月 31 日

計畫主持人： 林盈達 教授

共同主持人：

本成果報告包括以下應繳交之附件：
□ 赴國外出差或研習心得報告一份
□ 赴大陸地區出差或研習心得報告一份
□ 出席國際學術會議心得報告及發表之論文各一份
□ 國際合作研究計畫國外研究報告書一份

執行單位： 交通大學資訊科學系

中華民國 90 年 9 月 15 日
Abstract

This paper presents a novel network CAT system, DIYexamer (Do-It-Yourself Examer). It has three features that differentiate it from existing CAT systems: student DIY items, item-bank sharing, and automatic assessment of item discriminability. DIYexamer accepts test items contributed form teachers as well as students, and allows limited item sharing between item-banks possibly maintained by different organizations. An algorithm is applied dynamically to assess the discriminability of items in item-banks in order to filter out less qualified contributions, hereby assuring the quality of stored items while scaling up the size of item-banks.

Keywords: Computer Assisted Testing, Test Evaluation, Test Item Acquisition, Discriminability, Distant Learning
computer-assisted testing system, teachers generate tests, the system presents test sheets and students then complete the tests. That is, they play a passive role within the testing system, and are not afforded the opportunity to conduct “meta-learning” or “meta-analysis.”

3) No guarantee on item quality: Permitting students to generate tests may be a possible solution to the aforementioned problems. However, this raises a new problem: quality assurance and ensuring that the tests are worth storing and used for further tests. Even when the whole item-bank is contributed by teachers and content experts, ways to dynamically assess and filter test items are needed.

1 The Diyexamer Solution

The DIYexamer[5] provides a web interface for users to remotely control and operate the system. Three kinds of users are supported: administrators, teachers, and students. It allows students to contribute test items, and provides an effective means of verifying the discriminability of these items. Three main ideas are introduced below:

1) Item DIY by students: DIYexamer allows students to generate test items into the item-bank online as Fig 1, while teachers can query these items generated by students. In addition to rapidly increasing the total number of items in an item-bank, this feature also encourages students to develop meta-learning, i.e. creative learning. In order to submit tests, students must thoroughly study the learning materials, develop higher-level overviews of the materials, and practice cognitive and creative thinking.

2) Assessment of item discriminability: DIYexamer provides an item-discriminability assessment method to ensure the quality of the stored items. In addition to ensuring the internal consistency of existing test items, this method also continuously and dynamically screens additional new items in the item-bank.

Fig 1: Students generate items into the item-bank

3) Item-bank sharing: DIYexamer, a scalable multi-server system, connects many item-banks stored in different servers. Therefore, via the Internet, more items can be accessed and shared. The sharing is limited and controlled in a sense that a server issues a request, describing the criteria of a test item it requests, to another server.

Additional advantages have been identified and include the facts that since DIYexamer provides a real-time on-demand generation of test-sheet function, cheating is avoided. Also, DIYexamer provides an item cross-analysis function to which the degree of difficulty for each test as well as the entire test base can be accurately measured.

2 Discriminability Assessment Of Diyexamer

When selecting sample students, only those whose scores have large gap with the average score should be considered. Accordingly, those with the top 30%, in terms of range, scores are defined as “high-score group (H’)”, while those with the bottom 30% scores are defined as “low-score group (L’)”. To show the different criteria and effects of choosing samples in the traditional method and DIYexamer method, Fig.2 depicts the score distribution in a test. In this example, the highest score is 92, the lowest
score is 34, and the average score is 69. The “high rank score group” and the “low rank score group” are chosen according to these two methods. Take student X as an example, the score of X is 66, which differs only 3 points from the average score. The associated information of X should have little, if not none, referential value in computing item discriminability. However, X is chosen as a sample in the high rank group in the traditional method. This fallacy results from using rank group, in terms of count, as the criterion of choosing samples. In DIYExamer, X is not chosen since score group, in terms of range, rather than rank group is used. Only those with large gap with the average score are chosen as samples.

\[
\text{Discriminability} = \frac{\text{Sum of the referential values of sampled students}}{\text{Number of sampled students}}
\]

Since the referential values depend on students’ scores, the referential values are computed according to the ratio of correct and incorrect answers of the sampled students. The ratios of correct and incorrect answers are defined as,

\[
\text{Ratio of correct answer} = \frac{\text{Number of items answered correctly}}{\text{Number of items on the test}}
\]

\[
\text{Ratio of incorrect answer} = \frac{\text{Number of items answered incorrectly}}{\text{Number of items on the test}}
\]

According to Table 1, the referential value of a student correctly answered an item is the ratio of correct answer of the student. Alternately, the referential value of a student incorrectly answered an item is the ratio of incorrect answer of the student. This policy comes from the fact that an item should have increased discriminability if correctly answered by a competent student, while rendering decreased discriminability if correctly answered by a less competent student. In this way, a competent student contributes large referential value to a correctly answered item and small referential value to an incorrectly answered item, and vice versa.

### 1 Evaluation Of The Discriminability Assessment In DIYExamer

The fairness and performance of DIYExamer was evaluated. We conducted an experiment where 10 students took the test on-line using DIYExamer with 10 items. Discriminability for each item is computed using both the traditional method and the DIYExamer method. However, the discriminability originally falls between -1 to 1 using the traditional method, while falling between 0 to 1 using the DIYExamer method. To compare these two methods, both two ranges of discriminability are normalized from 0 to 10, as shown in Fig 3.

![Diagram](attachment:image1.png)

**Fig 2:** Comparison of samples taken in the traditional method and DIYExamer method.

For different samples that have different impacts on discriminability, a referential value with respect to an item is generated for each student selected as a sample. We first define the item discriminability as the average of all associated referential values.

**TABLE 1:** Principle to compute the referential value of a student with respect to an item.
<table>
<thead>
<tr>
<th>Student</th>
<th>Answer</th>
<th>Item discriminability</th>
<th>Referential value to compute discriminability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Competent (With high ratio of correct answer)</td>
<td>Correct</td>
<td>High</td>
<td>Ratio of correct answer</td>
</tr>
<tr>
<td></td>
<td>Incorrect</td>
<td>Low</td>
<td>Ratio of incorrect answer</td>
</tr>
<tr>
<td>Less competent (With low ratio of correct answer)</td>
<td>Correct</td>
<td>Low</td>
<td>Ratio of correct answer</td>
</tr>
<tr>
<td></td>
<td>Incorrect</td>
<td>High</td>
<td>Ratio of incorrect answer</td>
</tr>
</tbody>
</table>

2 Conclusion

This paper has presented a novel architecture for a networked CAT system, DIYexamer. It supports item DIY by students, item-bank sharing, and item discriminability assessment.

For discriminability assessment, new calculation formulas were proposed. When compared with the traditional assessment scheme, the main difference is that the top and the bottom 30% of the score group, in terms of range of scores were selected rather than the rank group, in terms of count of students. Thus, item discriminability is more accurately reflected particularly when the tested students have close scores.

Item-bank sharing and item DIY by students has increased both the amount and the variety of questions in item-banks. Item DIY by students promotes creative learning within students, while automatic discriminability assessment assures better quality than traditional CAT systems.

四、計畫成果自評

A questionnaire was used to survey subjective attitudes of students about DIYexamer and the outcome revealed that most students were interested in item DIY.

The technique proposed herein is useful in general tuition not only to improve the quality of test items and fairness; but also to save time from generating questions and computing scores. We recommend that DIYexamer be popularized to schools.

五、參考文獻


