行政院國家科學委員會專題研究計畫  成果報告

超寬頻低雜訊放大器設計

計畫類別：個別型計畫
計畫編號：
執行期間： 年 月 日至 年 月 日
執行單位：國立交通大學電子工程學系及電子研究所

計畫主持人：胡樹
計畫參與人員：

報告類型：精簡報告
處理方式：本計畫可公開查詢

中華民國 年 月 日
Wide-Band Matched LNA Design Using Transistor’s Intrinsic Gate–Drain Capacitor

Robert Hu

Abstract—This paper presents the development of a wide-band amplifier with matched input impedance and low noise temperature over 10–20 GHz. Here, the novel wide-band feedback mechanism provided by the transistor’s intrinsic gate–drain capacitor will be analyzed in detail with both the derived input reflection coefficient and noise temperature of the resulting circuit confirmed by their simulated counterparts. It is thus clear why by fine tuning its output RC loading impedance and source inductance, a transistor’s input reflection coefficient and noise temperature can be greatly improved over broad bandwidth. To demonstrate the feasibility of this novel approach, a wide-band low-noise amplifier (LNA) is designed and characterized. A bandwidth broadening mechanism using double feedback is also proposed for the future design of matched ultra-wide-band LNA.

Index Terms—Input matching, low-noise amplifier (LNA), noise parameters, noise temperature, wide-band.

I. INTRODUCTION

WIDE-BAND low-noise amplifiers (LNAs) have been a critical component in communication industry [1]–[3] and different scientific fields such as the very noise-sensitive radio-astronomy instrumentation where the typical LNA circuit has single-ended transistors in cascade [4]–[6]; LNAs with complicated input tuning circuits, which result in the inevitable incoming signal loss are, therefore, not suitable for astronomical receivers. With this type of cascade, LNAs keep reaching even higher frequency and wider bandwidth, but what is less explored is an accurate and satisfactory account, beyond the scope of simulation or speculation, of how the matched input impedance can be achieved over wide bandwidth [7]–[13].

On the Smith chart in the intended frequency range, a typical input reflection coefficient ($S_{in}$) contour of the wide-band LNA is a loop surrounding the zero point where a small enclosed area is preferred; while that of the narrow-band LNA is a trajectory passing through the zero point at one specific frequency point (Fig. 1). As has been well studied, in the narrow-band design where the impact of the intrinsic feedback, i.e., the Miller effect, can be suppressed using cascode circuit configuration, it is the combination of external source and gate inductors with the transistor itself that brings in the desired matched input impedance [14]–[16]. By replacing these inductors with some more complicated $LC$ matching circuits, such as a high-order bandpass ladder filter, wider bandwidth can indeed be achieved [17]–[19]. However, the more complicated this passive impedance matching circuit is, the higher the resulting amplifier’s noise temperature will be, as the accumulated input signal loss can no longer be neglected, especially if the substrate is a lossy one like silicon.

Contrary to the straightforwardness of the conventional narrow-band and its extended wide-band circuit configurations, some mathematical manoeuvring are needed in analyzing this novel wide-band input matching mechanism. A useful first step is with a simplified transistor model where only the transconductance $G_{m}$, the gate–source capacitor $C_{gs}$, and the gate–drain capacitor $C_{gd}$ are involved, as shown in Fig. 2(a). The output loading circuit is assumed to be a capacitor $C_{FB}$, which is legitimate since the transistor, especially the first-stage one, in the LNA does not need to have its output loading impedance equal to 50 Ω. Since $G_{m}$ is much larger than $\omega C_{gd}$,
Relevant equations will be developed below to explain the simulated results and how the wide-band mechanism works, followed by the implementation of a wide-band LNA. A bandwidth broadening mechanism suitable for ultra-wide-band LNA design is then proposed. Since any gain variation of the input transistor can always be compensated in the following stages of the LNA, and the impact of the transistor’s gain degradation on the overall noise temperature is only secondary when compared with the transistor’s directly contributed noise, gain performance will not be addressed in this paper.

II. INPUT MATCHING ANALYSIS

To facilitate the input-matching analysis, the wide-band circuit configuration needs to be decomposed into two sub-circuits like that of Fig. 4: one is with resistive output loading $R_{\text{FB}}$, which accounts for the high-frequency response of the original circuit; the other one is with capacitive output loading $C_{\text{FB}}$, which is used to explain the original circuit’s low-frequency behavior. The external source inductor $L_{\text{FB}}$ exists in both cases.

If both $C_{\text{gs}}$ and $R_{\text{ds}}$ can be neglected, input impedance of the resistive-loading circuit will be

\[
Z_{\text{in}} = \frac{1}{j\omega C_{\text{gs}}} + \frac{L_{\text{FB}}(G_m + j\omega C_{\text{gs}})}{C_{\text{gs}}} \approx \frac{1}{j\omega C_{\text{gs}}} + \frac{L_{\text{FB}}G_m}{C_{\text{gs}}}
\]

(2)

where it is assumed that the impedance of $C_{\text{gs}}$ is much larger than that of $L_{\text{LF}}$, which is usually the case in designing an amplifier circuit. This $Z_{\text{in}}$ expression can be best understood as: the induced current $G_mV_C$ flowing through inductor $L_{\text{FB}}$ will generate a voltage that is in phase with the input current and, therefore, contributes a value of $L_{\text{FB}}G_m/C_{\text{gs}}$ to the input resistance. Conceptually this interpretation is correct, but numerically it is inaccurate because of the omission of $C_{\text{gs}}$ and $R_{\text{ds}}$. The impact of $C_{\text{gs}}$ is that it will increase the effective input capacitance and, thus, reduces the amount of Re[$Z_{\text{in}}$] generated by $L_{\text{FB}}$, while the finite-value $R_{\text{ds}}$ will degrade the transconductance $G_m$ and, hence, lowers the induced current flowing through $L_{\text{FB}}$. A better approximation for the input impedance is

\[
Z_{\text{in}} \approx \left( \frac{1}{j\omega C_{\text{gs}}} + \frac{L_{\text{FB}}G_m}{C_{\text{gs}}} \right) \left[ 1 + \frac{C_{\text{gs}}}{C_{\text{gs}}} + \gamma G_m R_{\text{FB}} \right]^{-1}
\]

(3)
with the degradation factor $\gamma$ defined as

$$\gamma = \frac{R_{dk}}{R_{ds} + R_{FB} + j\omega L_{FB}}. \quad (4)$$

In deriving (3), it is assumed

$$\omega L_{FB} \ll \frac{1}{\omega C_{gs}} \quad \omega L_{FB} \ll R_{FB} \quad (5)$$

and the leakage current flowing through $C_{gd1}$ is much smaller than the induced drain current. Of course, the matching frequency for $Z_{in} = 50 \Omega$, i.e., $Z_0$, is very high if not infinite. For the transistor under discussion, the required $L_{FB}$ for matching only the real part of the input impedance will be a mere 38 pH using (2), and 200 pH if (3) is adopted. As expected, simulated results justify the choice of the latter one. Fig. 5 shows the input reflection coefficient from 0.1 to 20 GHz of the resistive-loading transistor circuit: the solid curves are the simulated results where curve 1 has $R_{FB} = 60 \Omega$ and $L_{FB} = 200$ pH and curve 2 has $R_{FB} = 60 \Omega$ and $L_{FB} = 38$ pH; the dashed curves are the calculated counterparts using (3). The high-frequency discrepancy between the solid and dashed curves is due to the assumption, i.e., (5), used in deriving the close-form expression for input impedance. If an external inductor is inserted to the input of the transistor circuit, a matched input impedance can be obtained at some finite-value frequency point; in this paper’s proposed wide-band circuit, however, this inductor has been taken away.

To facilitate the analysis of the capacitive-loading circuit, the induced current source needs to be converted into the induced voltage source $G_mR_{ds}V_C$, as in Fig. 6(a). Here, $Y_\alpha$ is the admittance looking into the $C_{gd1}$ branch and $Z_\beta$ is the impedance looking into the $C_{gs}$ branch. If the induced current $G_mV_C$ is much larger than the current flowing through either $C_{gd1}$ or $C_{gs}$, the loop current $I_{loop}$ can be approximated as

$$I_{loop} = G_m R_{ds} V_C \left[ R_{ds} + j\frac{1}{\omega C_{FB}} + j\omega L_{FB} \right]^{-1}. \quad (6)$$

Thus, the admittance looking into the $C_{gd1}$ branch is

$$Y_\alpha = j\omega C_{gd1} \frac{V_1 - V_2}{V_1} = j\omega C_{gd1} + \left( R_\alpha + \frac{1}{j\omega C_\alpha} + j\omega L_\alpha \right)^{-1} \quad (7)$$

with

$$R_\alpha = \frac{C_{FB}}{G_m C_{gd1}} \quad C_\alpha = G_m R_{dk} C_{gd1} \quad L_\alpha = \frac{L_{FB} C_{FB}}{G_m R_{gd1} C_{gd1}} \left( 1 + G_m R_{dk} \right). \quad (8)$$

Likewise, the impedance into the $C_{gs}$ branch is

$$Z_\beta = \frac{1}{j\omega C_{gs}} \frac{V_1}{V_3} = \frac{1}{j\omega C_{gs}} + \left( \frac{1}{R_\beta} + j\omega C_\beta + \frac{1}{j\omega L_\beta} \right)^{-1} \quad (9)$$

with

$$R_\beta = \frac{G_m L_{FB}}{C_{gs}} \quad C_\beta = G_m \frac{R_{ds}}{C_{gs}} \quad L_\beta = \frac{L_{FB} G_m R_{ds}}{C_{gs}}. \quad (10)$$

With knowledge of $Y_\alpha$ and $Z_\beta$, input impedance of the capacitive-loading circuit can be easily found out as follows:

$$Z_{in} = \left( Y_\alpha + \frac{1}{Z_\beta} \right)^{-1}. \quad (11)$$

From the input point-of-view, the capacitive-loading circuit can be rearranged such as that of Fig. 6(b). The critical components are those on the $R_\alpha C_\alpha L_\alpha$ branch, while the other two shunt branches offer some modifications, as can be verified through simulation. In Fig. 7, the solid curve is the simulated result with
The 3-dB bandwidth can also be calculated accordingly. With the discussed component values, the calculated frequency using (12) is 4.79 GHz and is very close to the simulated one.

Thus, the increase with frequency of the noise temperature comes mainly from \( C_{gs} \) and, to a lesser extent, from \( C_{gd} \). By using an input inductor to mitigate the capacitive effect, noise temperature of a narrow-band transistor circuit can be greatly reduced at one frequency point.

To derive the noise-temperature expression for the wide-band circuit, its output loading \( R_{FB}C_{FB} \) needs to be replaced by a short circuit. Since the input noise temperature of a two-port circuit is a function of its generator impedance, but not its output loading impedance, this short-circuit arrangement is legitimate with the additional advantage of simplifying the derivation procedure. To avoid the mathematical entanglement while retain the underlying physics, capacitor \( C_{gd} \) will be omitted here.

First, the relationship between the output current \( I_{s\text{start}} \) and noise current \( I_R \), which is generated by \( R_{ds} \) at temperature \( T_{\text{drain}} \), has to be constructed, as indicated in Fig. 10(a). Since

\[
T_n = \frac{T_{\text{drain}}}{G_m^2 R_{ds} R_g} \left[1 + j\omega(C_{gs} + C_{gd})Z_g\right]^2
= \frac{T_{\text{drain}}}{G_m^2 R_{ds} R_g} \left|Y_g + j\omega(C_{gs} + C_{gd})\right|^2,
\]  

(13)
the voltage $V_C$ on $C_{gs}$, which is the gate voltage minus the source voltage, is

$$V_C = \frac{-Z_C V_L}{Z_g + Z_C} = \frac{-Z_{LR} Z_C I_R}{Z_g + Z_C + Z_{LR} + G_m Z_{LR} Z_C} \quad (14)$$

with

$$Z_{LR} = \left( \frac{1}{j \omega L_{FB}} + \frac{1}{R_{ds}} \right)^{-1}$$

$$Z_C = \frac{1}{j \omega C_{gs}}. \quad (15)$$

Thus,

$$I_{short} = I_R + G_m V_c \frac{V_L}{R_{ds}} = I_R \frac{Z_g + Z_C + Z_{LR} - j Z_C}{Z_g + Z_C + Z_{LR} + G_m Z_{LR} Z_C}. \quad (16)$$

Now this $I_{short}$ has to be transformed to its equivalent input noise voltage $V_{ig}$, which is generated by $Z_g$ at temperature $T_n$, as shown in Fig. 10(b). Since

$$V_C = \frac{Z_v L}{\sqrt{1 + G_m Z_C} Z_{LR}} = \frac{Z_c V_g}{Z_g + Z_C + Z_{LR} + G_m Z_{LR} Z_C} \quad (17)$$

then

$$I_{short} = \frac{G_m V_c}{R_{ds}} \frac{V_L}{Z_g + Z_C + Z_{LR} + G_m Z_{LR} Z_C}. \quad (18)$$

Following the thermodynamic definition, the noise voltage $V_{ig}$ and noise current $I_R$ per unit bandwidth will be [25]

$$[V_{ig}]^2 = 4 K R_g T_n \quad [I_R]^2 = 4 K T_{\text{drain}} R_{ds} \quad (19)$$

where $K$ is the Boltzmann’s constant. Thus,

$$T_n = \frac{T_{\text{drain}}}{G_m^2 R_{ds} R_g} \left| \frac{A}{B} \right|^2 \quad (20)$$

\[\text{Fig. 10. Schematics used for noise-temperature derivation. (a) Schematic used to derive the output short-circuit $I_{short}$ from the $R_{ds}$-accompanying noise current $I_R$. (b) Schematic used to obtain the equivalent generator noise voltage $V_g$ from $I_{short}$.}\]

Fig. 11. Simulated and calculated noise temperatures of the wide-band transistor circuit with 50-Ω generator impedance. (a) The solid curves are the simulated $T_n$ with curves 1–5 corresponding to circuit with external source inductor $L_{FB} = 0$, 30, 100, 150, and 200 Ω, respectively; the overlapping dashed curves are the calculated counterparts using (20). (b) The solid curves are the same simulated $T_n$; the dashed curves are the calculated results using (22), which is itself a rough approximation.

$$A = 1 + \frac{Z_g + Z_{LR}}{Z_C R_{ds}} \quad B = 1 - \frac{Z_{LR}}{Z_C R_{ds}} \left( \frac{1}{G_m} + Z_C \right). \quad (21)$$

When the generator impedance is 50 Ω, i.e., $Z_0$, a rough yet informative approximation is retaining the first three items of $A$ while setting $B$ to one; therefore,

$$T_n \approx T_{\text{drain}} \left| \frac{A}{B} \right|^2 \quad (22)$$

It is now clear that the inclusion of the source inductor $L_{FB}$, even of small value, brings in the inductive $Z_{LR}$, thus leveling the noise-temperature curve. Fig. 11(a) shows the simulated and calculated noise temperatures with 50-Ω generator impedance: solid curves 1–5 correspond to the simulated results with $L_{FB} = 0$, 30, 100, 150, and 200 Ω, respectively; the dashed curves are their calculated counterparts using (20). Validity of the rough approximation is confirmed in Fig. 11(b) where the solid curves are again the simulated results; the dashed curves are the calculated ones using (22). The reason why a large $L_{FB}$ at high frequency tends to pull $T_n$ down to 0 K is because, in this extreme case, the lower end of the drain resistor becomes floating; thus, noise current $I_R$ can no longer reach the output loading circuit and be counted as effective noise.

IV. WIDE-BAND LNA DESIGN AND CHARACTERIZATION

As a demonstration of the newly proposed input-matching method, a wide-band LNA using Raytheon’s metamorphic HEMT fabrication process is designed and measured. The constituting transistor is displayed in Fig. 12(a) and has its gate split into four fingers, each 0.1-μm wide and 50-μm long. Its S-parameters, as measured on-wafer at room temperature, are shown in Fig. 12(b) where the solid curves have bias condition of $V_g = 1.0$ V and $I_d = 12$ mA and the dashed curves have $V_g = 0.6$ V and $I_d = 12$ mA. The gate currents in both cases
are less than 1 μA. Once extracted [26], parameters corresponding to the solid curves are used in this paper’s discussion of wide-band input matching.

One concern in designing the wide-band LNA is about the implementation of the gate bias circuit, especially that of the first-stage transistor since it will directly affect the circuit’s noise performance. For a narrow-band LNA operating at the millimeter-wave frequency range, a grounded quarter-wave transmission line can be used since it behaves like an open circuit for the incoming signal [27]. However, the required quarter-wave line is too large to be implemented into the intended 10–20-GHz circuit chip; one viable option is using a large resistor, which is intrinsically wide-band and can be low loss. For a gate bias resistor $R_{\text{bias}}$, the increased noise temperature due to its thermal noise is $\Delta T_n = T_{\text{amb}}/\left|G_g R_{\text{bias}}\right|$, where $T_{\text{amb}}$ is the ambient temperature. With 50-Ω generator impedance, a 600-Ω gate bias resistor contributes at least 24 K, to say nothing of the incoming signal loss.

Since in the real circuit a lumped resistor has to be realized as a thin-film resistor, as in Fig. 13(a), its parasitic shunt capacitance will inevitably deteriorate the LNA’s noise performance. Fig. 13(b) compares the noise impact of different gate bias schemes: curve 1 is without any gate bias and $C_{g1}$ is omitted; curve 2 now has $C_{g1}$ included, but still has no gate bias circuit; curve 3 has $C_{g1}$, and an ideal lumped 600-Ω resistor is used for gate bias; curve 4 adds an additional 40-fF parasitic capacitor in parallel with this 600-Ω lumped resistor; curve 5 replaces the lumped resistor and its parasitic capacitor with a 600-Ω thin-film resistor that is 5-μm wide and 500-μm long with 6-Ω/square sheet resistivity; curve 6 takes a different approach by using an ideal 2000-μm bond wire for gate bias. With the goal of minimizing the bias circuit’s noise impact, the off-chip scheme offers the best result. If out-of-band low-frequency $S_{\text{in}}$ is also desired to be small, this long bond wire’s other end can be connected to a 50-Ω resistor without increasing much in-band noise.

The 10–20-GHz LNA is a three-stage amplifier with common drain and gate biases, and is fabricated by Raytheon. It has dimensions of 2000 × 750 × 100 μm³, as in Fig. 14, where color shading has been inverted to highlight the constituting components. Fig. 15 shows the schematic of this LNA where the capacitance is in femtofarads and the resistance is in ohms. The indicated air bridge on the gate of the first stage can be removed using a needle probe, thus allows the gate of the first-stage transistor to be separately biased.

The 10–20-GHz LNA is a three-stage amplifier with common drain and gate biases, and is fabricated by Raytheon. It has dimensions of 2000 × 750 × 100 μm³, as in Fig. 14, where color shading has been inverted to highlight the constituting components. Fig. 15 shows the schematic of this LNA where the capacitance is in femtofarads and the resistance is in ohms. The indicated air bridge on the gate of the first stage can be removed using a needle probe, thus allows the gate of the first-stage transistor to be separately biased.
only tapers the gain curve, but also renders an output impedance less reactive. The inclusion of the 30-Ω resistor on each drain branch, though slightly increasing the circuit’s power dissipation and noise temperature, ensures a negative $S_{11}$ (in decibels) at very low frequency and, therefore, unconditional stability. The 30-Ω drain resistors on the second and third stages are further split into 10- and 20-Ω ones, which, when combined with large bypass capacitors, form low-pass filters and shore up the signal isolation along the common drain bus.

The first-stage transistor has its source connected to ground, i.e., the $100 \times 100 \mu m^2$ via pad, by way of a $110-\mu m$-long transmission line, which can be viewed as the aforementioned $L_{EFB}$ inductor. The source of the second (and also the third) transistor is directly connected to its two adjacent ground pads so that its inductive effect can be reduced and, thus, boosts the circuit’s gain response at high frequency. To have a matched output impedance, an 18-Ω resistor is added. Since the LNA already has a large $S_{21}$, this resistor-caused gain loss can be tolerated and its noise contribution is also small.

The simulated and measured results of this circuit on-wafer at room temperature are presented in Fig. 16. Here, the darkened solid curves are the results measured on-wafer with $V_d = 1.1$ V, $I_d = 36$ mA, $V_g = -0.49$ V, and $I_g = -0.52$ $\mu$A, and the testing power of the vector network analyzer is $-40$ dBm; the other curves are the simulated results where three transistor models, extracted from different wafers and under different bias conditions, are employed. Since during packaging bond wire 200–300-μm long has to be included at the input (and also output), its impact on $S_{11}$ has to be taken into account. Fig. 17(a) shows the simulated $S_{11}$ of the LNA from 0.1 to 30 GHz without the input bond wire. Once input bond wire is added, as in Fig. 17(b), this LNA becomes perfectly wide-band matched.

As discussed in Section III, appropriate $RC$ output loading impedance for the LNA’s first-stage transistor is crucial in achieving matched input impedance over wide bandwidth. Fig. 18(a) thus shows the simulated 10–20-GHz output loading reflection coefficient for the first-stage transistor from 10 to 20 GHz. (a) Total output loading reflection coefficient. (b) Two constituting reflection coefficients $S_{1,LA}$ and $S_{1,B}$, which are defined in the LNA’s schematic.

refection coefficient for the first-stage transistor and, again, three different transistor models are employed. Being on the lower half of the Smith chart, they resemble that of an $RC$ circuit. A further decomposition is presented in Fig. 18(b), where $S_{1,LA}$ is the input reflection coefficient looking specifically into the second-stage transistor and resembles $S_{in}$ of a one-port $RC$ circuit; $S_{1,B}$ is the input reflection coefficient looking into the drain bias branch and is similar to $S_{in}$ of an $RL$ circuit.

After carrying out the $S$-parameter measurement, this circuit is ready to be characterized in terms of noise. As known, noise temperature of a two-port circuit can be expressed as a function of its noise parameters: minimum noise temperature $T_{\text{min}}$, noise ratio $N$, and optimum reflection coefficient $\Gamma_{\text{opt}}(=\gamma_{\text{opt}}\exp[i\theta_{\text{opt}}])$, which is a complex number, i.e.,

$$T_n = T_{\text{min}} + 4T_0N\frac{\left|\Gamma_g - \Gamma_{\text{opt}}\right|^2}{\left|1 - \left|\Gamma_{\text{opt}}\right|^2\right|}$$

where $T_0$ is 290 K and $\Gamma_g(=\gamma_g\exp[i\theta_g])$ is the generator reflection coefficient. The reason why noise ratio $N$ rather than the conventional noise resistance $R_n$ has been adopted is because $N$ is invariant to lossless transformation [28]. The relationship between $N$ and $R_n$ is

$$N = R_n \cdot \text{Re}[Y_{\text{opt}}]$$

where $Y_{\text{opt}}$ is the optimum generator admittance. For a physical two-port circuit, there is one more constraint, i.e., the value of $4T_0N/R_{\text{min}}$ must be larger than one, which implies the correlation coefficient between the two noise waves out of ports 1 and 2 cannot be larger than one [29], [30].
Fig. 19. Schematic of the transistor circuit and its simulated noise temperature with 50-Ω generator impedance. (a) In the schematic, $R_i$ is assumed to be at ambient temperature, while $R_{th}$ is at temperature $T_{th_{\text{sim}}}$, (b) In the simulated $T_{th}$, solid curves 1–6 correspond to the transistor circuit with no $L_{FE}$ and the correlation coefficient between $R_i$-induced noise voltage and $R_{th}$-induced noise current is 0, 0.2, 0.4, 0.6, 0.8, and 1.0, respectively. The six dashed curves are for the transistor circuit with 200-pH $L_{FE}$ and the noise correlation coefficient is changing from 0 to 1 again.

When a small gate resistor $R_i$ is included for better transistor modeling [31], [32], noise temperature of the transistor circuit, like that of Fig. 19(a), will now be a function of the correlation coefficient between the noise voltage from $R_i$ at temperature $T_{th}$ and the accompanying dashed curves are their simulated counterparts with noise correlation coefficient changing from 0 to 1. (b) The measured and simulated $\Gamma_{\text{opt}}$.

When a small gate resistor $R_i$ is included for better transistor modeling [31], [32], noise temperature of the transistor circuit, like that of Fig. 19(a), will now be a function of the correlation coefficient between the noise voltage from $R_i$ at temperature $T_{th}$ and the accompanying dashed curves are their simulated counterparts with noise correlation coefficient changing from 0 to 1. The simulated results are presented in Fig. 19(b) where the solid curves are without any $L_{FE}$, while dashed curves have a 200-pH source inductor $L_{FE}$ added to the transistor. Curves 1–6 correspond to correlation value of 0, 0.2, 0.4, 0.6, 0.8, and 1.0, respectively. Here, $R_i$ is set to 1 Ω and $T_{th_{\text{sim}}}$ is assumed to be 2300 K. Due to the difficulty in carrying out noise-parameter measurement accurately down to the transistor level [33], different (rather than one specific) values of the correlation coefficient are used in the LNA’s noise simulation.

Fig. 20 shows both the measured and simulated noise characteristics of the LNA on-wafer at room temperature. (a) The solid curves are the measured $4T_0N$, $T_{th}$, and $T_{th_{\text{min}}}$, and the accompanying dashed curves are their simulated counterparts with noise correlation coefficient changing from 0 to 1. (b) The measured and simulated $\Gamma_{\text{opt}}$.

When a small gate resistor $R_i$ is included for better transistor modeling [31], [32], noise temperature of the transistor circuit, like that of Fig. 19(a), will now be a function of the correlation coefficient between the noise voltage from $R_i$ at temperature $T_{th}$ and the accompanying dashed curves are their simulated counterparts with noise correlation coefficient changing from 0 to 1. The simulated results are presented in Fig. 19(b) where the solid curves are without any $L_{FE}$, while dashed curves have a 200-pH source inductor $L_{FE}$ added to the transistor. Curves 1–6 correspond to correlation value of 0, 0.2, 0.4, 0.6, 0.8, and 1.0, respectively. Here, $R_i$ is set to 1 Ω and $T_{th_{\text{sim}}}$ is assumed to be 2300 K. Due to the difficulty in carrying out noise-parameter measurement accurately down to the transistor level [33], different (rather than one specific) values of the correlation coefficient are used in the LNA’s noise simulation.

Fig. 20 shows both the measured and simulated noise characteristics of the LNA on-wafer at room temperature with $T_{th_{\text{sim}}}$ set to 2300 K. The solid curves are the measured results with LNA biased at 36 mA and 1.1 V, and the dashed curves are the simulated counterparts with the noise correlation coefficient changing from 0 to 1, with step size equal to 0.2. It is the LNA’s small $S_{21}$ and large $T_{th}$ at 3 GHz that set the low-frequency limit in the noise measurement; the 18-GHz high-frequency measurement limit is imposed by the available frequency range of the noise source itself. The LNA’s noise parameters, as measured on-wafer using a wide-band frequency-variation method [34], has its in-band $4T_0N/T_{th_{\text{min}}}$ ratio equal to 1.7, which is a reasonable number. The high-frequency discrepancy between the simulated and measured curves can be accounted for in terms of the slightly smaller $S_{21}$ in the simulation at high frequency. Revised modeling of the constituting components should result in more agreeing $S_{21}$ curves, thus minimizes the noise temperature difference. Simulated $\Gamma_{\text{opt}}$, nevertheless, shows little dependency on the noise correlation coefficient and is close to the measured one.

The packaged LNA is shown in Fig. 21. Both the input and output 50-Ω transmission lines are on a 10-mil Duroid 3010 substrate. In addition to the two capacitors for drain and gate biases, a third capacitor is added at the input of the circuit for dc-blocking purpose.

Fig. 22 shows the $S$-parameters and noise temperature of the packaged LNA at room temperature. (a) Measured $S$-parameters of this packaged LNA. $S_{12}$ is below −20 dB and not displayed here. (b) Measured noise temperature with 50-Ω generator impedance.

When a small gate resistor $R_i$ is included for better transistor modeling [31], [32], noise temperature of the transistor circuit, like that of Fig. 19(a), will now be a function of the correlation coefficient between the noise voltage from $R_i$ at temperature $T_{th}$ and the accompanying dashed curves are their simulated counterparts with noise correlation coefficient changing from 0 to 1. The simulated results are presented in Fig. 19(b) where the solid curves are without any $L_{FE}$, while dashed curves have a 200-pH source inductor $L_{FE}$ added to the transistor. Curves 1–6 correspond to correlation value of 0, 0.2, 0.4, 0.6, 0.8, and 1.0, respectively. Here, $R_i$ is set to 1 Ω and $T_{th_{\text{sim}}}$ is assumed to be 2300 K. Due to the difficulty in carrying out noise-parameter measurement accurately down to the transistor level [33], different (rather than one specific) values of the correlation coefficient are used in the LNA’s noise simulation.

Fig. 20 shows both the measured and simulated noise characteristics of the LNA on-wafer at room temperature with $T_{th_{\text{sim}}}$ set to 2300 K. The solid curves are the measured results with LNA biased at 36 mA and 1.1 V, and the dashed curves are the simulated counterparts with the noise correlation coefficient changing from 0 to 1, with step size equal to 0.2. It is the LNA’s small $S_{21}$ and large $T_{th}$ at 3 GHz that set the low-frequency limit in the noise measurement; the 18-GHz high-frequency measurement limit is imposed by the available frequency range of the noise source itself. The LNA’s noise parameters, as measured on-wafer using a wide-band frequency-variation method [34], has its in-band $4T_0N/T_{th_{\text{min}}}$ ratio equal to 1.7, which is a reasonable number. The high-frequency discrepancy between the simulated and measured curves can be accounted for in terms of the slightly smaller $S_{21}$ in the simulation at high frequency. Revised modeling of the constituting components should result in more agreeing $S_{21}$ curves, thus minimizes the noise temperature difference. Simulated $\Gamma_{\text{opt}}$, nevertheless, shows little dependency on the noise correlation coefficient and is close to the measured one.

The packaged LNA is shown in Fig. 21. Both the input and output 50-Ω microstrip lines are on a 10-mil Duroid 3010 substrate, which has a large dielectric constant and is easy to handle, but tends to be lossy at high frequency. The circuit is attached using silver epoxy to the gold-plated copper chassis, which is designed to have isolation better than 40 dB at 20 GHz when the amplifier circuit is not biased. Since the on-chip input capacitor has been short circuited accidentally, an external chip capacitor for dc blocking has to be added. Due to the unleveled top surfaces of this chip capacitor and the amplifier circuit, a longer 1-mil input bond wire has to be used, and that causes the LNA’s $S_{11}$ to be matched at the slightly lower 10 and 15 GHz. A more agreeable $S_{11}$ should be obtained by using a connector-type dc-blocking capacitor at the input. Fig. 22 shows the measured $S$-parameters and noise temperature of this packaged LNA.
flat $-9$-dB $S_{11}$ curve toward 20 GHz exhibits the typical wide-band characteristic. This LNA can be cooled down in cryostat to have ultra-low noise temperature suitable for radio-astronomy and atmospheric applications [35]–[37].

V. BANDWIDTH BROADENING FOR POTENTIAL ULTRA-WIDE-BAND LNA DESIGN

Thus far in this paper, we have analyzed and demonstrated the feasibility of designing a matched 10–20-GHz LNA using the novel wide-band approach. Compared with the 20-GHz high end where further design iterations ensure an even smaller input reflection coefficient, much of the design challenge lies in achieving a good $S_{11}$ at 10 GHz, which is indeed the limiting factor in determining the circuit’s relative bandwidth. One may wonder whether this 10-GHz frequency point can be halved to have an ultra-wide-band 5–20-GHz LNA. Granted, the most straightforward way is using a larger transistor, probably twice the original size. Based on the wide-band theory contrived, the second approach is keeping the transistor unchanged while adding an external capacitor $C_{\text{ext}}$ in parallel with the intrinsic capacitor $C_{\text{gds}}$, thus boosting the intended feedback response at low frequency. Naturally, the third approach is a small 100–$\mu$m transistor in combination with a large $C_{\text{ext}}$. Fig. 23(a) shows the 100–$\mu$m transistor, which has a layout that resembles the 200–$\mu$m transistor, but has the number of fingers halved from 4 to 2. It is, therefore, reasonable to assume that its intrinsic parameters can be linearly scaled from that of the 200–$\mu$m one. Fig. 23(b) shows the ultra-wide-band circuit configuration with double feedback formed by $C_{\text{gds}}$ and $C_{\text{ext}}$.

The simulated $S_{\text{in}}$ and $T_{\text{n}}$ of these ultra-wide-band circuits, with $T_{\text{drain}} = 2300 \text{ K}$, are presented in Fig. 24 where curve 1 is with a 100–$\mu$m transistor and a large $C_{\text{ext}}$; curve 2 is with a 200–$\mu$m transistor and a small $C_{\text{ext}}$; and curve 3 is with a 400–$\mu$m transistor and has no $C_{\text{ext}}$. Though roughly in par with curve 2, it is the double power dissipation that runs against curve 3. The reason why curve 1 has a much larger noise temperature at low frequency is because $T_{\text{n}}$ is inversely proportional to $G_{\text{m}}^2 R_{\text{th}}$ [see (13)] and, thus, is inversely proportional to the size of the transistor. Parameters used in the simulation are tabulated in Table I where row 1 is for the 100–$\mu$m transistor circuit, row 2 is for the 200–$\mu$m one, and row 3 is for the 400–$\mu$m one.

Here the resistance is in ohms, capacitance is in femtofarads, and inductance is in picohenrys. Of course, if we want to design an LNA with even wider bandwidth, a slightly larger transistor with some moderate value of $C_{\text{ext}}$ has to be contemplated given that the transistor’s parameters are difficult to manipulate separately through process techniques.

VI. CONCLUSION

In this paper, a novel feedback approach for wide-band LNA design has been suggested and analyzed in detail. Agreements between the mathematical expressions and their simulated counterparts have confirmed this approach’s validity. A 10–20-GHz wide-band LNA was then designed and characterized. This is the first time an accurate and thorough account of how wide-band LNA works has been carried out and has been presented. The methodology proposed here will be useful for the future design of ultra-wide-band LNAs.

ACKNOWLEDGMENT

The author thanks S. Weinreb, J. Zmuidzinas, D. Miller, M. Edgar, J. Kooi, and N. Wadefalk, all with the California Institute of Technology, Pasadena. J. Ward and G. Chattopadhyay, both with the Jet Propulsion Laboratory (JPL), Pasadena, CA, S. I. Tsai, L. Yang and T. H. Sang, all with the National Chiao Tung University (NCTU), Hsin-Chu, Taiwan, R.O.C., F. K. Y. Lo, with the National Radio Astronomy Observatory (NRAO), Charlottesville, VA, and the anonymous reviewers of this TRANSACTIONS for suggestions and encouragement.

REFERENCES


Robert (Shu-I) Hu received the B.S.E.E. degree from the National Taiwan University, Taipei, Taiwan, R.O.C., in 1990, and Ph.D. degree from The University of Michigan at Ann Arbor, in 2003. From 1996 to 1999, he was with Academia Sinica, Taipei, Taiwan, R.O.C., where he was involved with millimeter-wave receivers. During 1999 and 2003, he was with the California Institute of Technology, Pasadena, where he was involved with millimeter-wave wide-band receiver. He is currently with the Department of Electronics Engineering, National Chiao Tung University, Hsin-Chu, Taiwan, R.O.C. His research interests include microwave and millimeter-wave electronics.