Method and implementation of displaying text on multiple display devices on mobile phone

研究生：黃福源
指導教授：趙禧綠 助理教授

中華民國九十七年一月
Method and implementation of displaying text on multiple display devices on mobile phone

Student: Fu-Yuang Huang

Advisor: Dr. Hsi-Lu Chao

A Thesis
Submitted to College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master of Science
In
Computer Science
Jan 2008

Hsinchu, Taiwan, Republic of China

中華民國九十七年一月

多重螢幕的文字分割顯示透過無線傳輸在手機裝置上的方法與實作
多重显著的文字分割顯示透過無線傳輸在手機裝置上的方法與實作

學生：黃福源
指導教授：趙禧緶 博士

國立交通大學 資訊學院 資訊學程碩士班

摘　要

現今手機裝置已經是日常生活中人人都接觸使用的通訊裝置，而透過更大頻寬或是更多樣化的網路服務，人們可以使用手機設備來存取越來越多豐富的網頁圖片甚至傳統的遠端服務，諸如 Email，BBS 等等。而當今的手機顯示螢幕不管是黑白、灰階或是彩色螢幕手機，顯示螢幕的大小也許是 70*92，120*144，甚至 240*320 或是高階 684*480 的機種，其螢幕顯示的大小對於文字輸出顯示的能力依然是有限制，對於瀏覽傳統大量文字服務，或是有特別需求的文字/圖片，如果把具有特定行數列數或是窄高比的文字區塊/圖片進行重新換行縮放的顯示動作，對於使用者的閱讀經驗將會造成許多困惑與不便，實際的狀況就如使用 Console 去連結 BBS 或是 Email Server，其輸出的畫面必定為傳統的 Console 視窗，具有寬 80 個 ascii 字元寬度，高度 25 行的限制。
本篇論文是提出一個針對原始文字內容，經過讀取檔案，分析文字內容
重新計算在多重手機陣列上的分割輸出，利用現今大部分手機已經具有的
無線傳輸能力，把重新分配過但追求接近原始文字內容格式的資料分派輸
出到多重手機的熒幕上作顯示，實做一個主控端手機控制所屬的附屬手機
來共同即時顯示瀏覽單一文件的方法驗證。

本篇論文透過實作來驗證單一內容分割在多重手機陣列上顯示的可行性，期望推廣此分割顯示機制在未來更多多媒體手機上的操作與應用。
Method and implementation of displaying text on multiple display devices on mobile phone

student : Fu-Yuang Huang

Advisors : Dr. Hsi-Lu Chao

Degree Program of Computer Science

National Chiao Tung University

ABSTRACT

In recent years, mobile phone have become a common communication device in our life, with more large bandwidth and more interesting network service, people can use their handset to access these service easily, such as HTTP, Email, Ftp event On-line game. Even from the low-end handset to high-end handset, these mobile phones' screen, display area from 70*92, 120*144, 240*240 or 640*480, their display area are limited to various font size and network application. When use such device to view a content with mounts of word/picture with fixed lines/width, if handset force to re-arrange the layout of the text/picture, it will result to user have many reading confusion with the original content. A real case, when we open a console to connect to Email or BBS, the console screen is fixed at width of 80 ASCII chars in one line, and total 25 lines.

In this thesis, we propose a novel method of displaying text on multiple devices with socket, and implement the real work to prove the method can load a single content, display on different handsets, use the master device to browse and scroll up/down, view the full content on different handsets and display well simultaneously.

In this thesis, we prove the proposed algorithm by implementation. The results show that the proposed method provides a new mechanism to display text on multiple handsets, and the future applications on mobile phone.
致謝

經過兩年多來的辛苦，一方面要兼顧職場工作上的專業進度，一方面也要繼續學校論文的進度，這一路上走了過來，經歷過的許多艱辛跟壓力，總算是完成了當初自己的心願，再次回到學校進修自己想要鑽研的領域以及完成自己想要的研究，雖然很多辛苦是默默的承受，很感謝也很感動，自己還是克服了，也完成了這一切。

這兩年來要感謝的人很多，最感謝的是我的指導老師－－趙禧緣教授，讓我這個年紀不小的專班研究生(當然是相對其他研究室的正式生而言)，在她的鞭策、鼓勵、包容以及諒解下，對於忙碌於學校與公司日夜生活的我，給予許多的關心跟指導，即使有時候因為公司加班狀況沒有機會回學校，她也都給予許多的建議，在她的鞭策、鼓勵之下，讓我在這兩年多的進修生活中，順利完成這篇論文，不管是生活上還是學業上，因為有她，才能讓我順順利利的從研究所完成學業，真的非常感謝她。

還要感謝的是實驗室夥伴們，不管是課業或研究上有什麼問題，他們都不會介意我是一個在園區工作的老大哥，也如同對待其他同學一樣親切熱情的回應我，對於許多問題上的請教與討論，都能深刻感受到同學們的年輕朝氣以及充滿對於學術研究的熱忱，感謝大家的照顧，有緣這兩年來一起共聚從事相關的學術與討論，我會記住這段珍貴的友情與緣份。

最後我更要感謝我的家人，爸爸媽媽還有正在攻讀博士的弟弟與正在唸書的妹妹，真心的感謝你們的關心以及對我的操心，每當我在繁忙的工作與課業之間奔波，永遠給我最溫暖的加油打氣，每當我感到困頓的時候，因為你們，讓我又有了更多的力量與動力，來為工作打拼，來為學校課業論文作衝刺，因為你們，讓我永遠都感到驕傲；感謝身邊的所有人，因為你們，我真的很幸福滿足，謝謝你們！
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chaper 1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.1 Traditional Console output</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.2 Display Limitation Of Mobile Handset Device</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1.3 Motivation</td>
<td>4</td>
</tr>
<tr>
<td>Chaper 2</td>
<td>The Proposed Method</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2.1 Initial State</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2.2 Information change state</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2.3 Display mode change state</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>2.4 Final state</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>2.5 Multiple display examples</td>
<td>11</td>
</tr>
<tr>
<td>Chaper 3</td>
<td>Development Environment</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>3.1 Software Architecture</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>3.2 User Interface</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>3.3 Enhancements and Applications</td>
<td>32</td>
</tr>
<tr>
<td>Chaper 4</td>
<td>Conclusion</td>
<td>33</td>
</tr>
<tr>
<td>Reference</td>
<td></td>
<td>34</td>
</tr>
</tbody>
</table>
List of Figures

Figure 1.1 To access FTP service by using traditional terminal console 2
Figure 1.2 To access BBS service by using traditional terminal console 2
Figure 1.3 Wrap the text layout to meet the screen size for reading 3
Figure 1.4 Scale the picture to view in full screen mode ... 4
Figure 2.1 Flow chart of the initial state .. 7
Figure 2.2 Flow chart of the information change state .. 8
Figure 2.3 Simple adjustment of the display area .. 9
Figure 2.4 Flow chart of the display mode change state ... 10
Figure 2.5 Flow chart of the final state ... 11
Figure 2.6 Two handsets with different display size ... 12
Figure 2.7 Open document on master device ... 12
Figure 2.8 Master display the text in original display mode .. 13
Figure 2.9 Master initial the network layer .. 13
Figure 2.10 Slave initial the network layer .. 14
Figure 2.11 Master connect to slave .. 14
Figure 2.12 Master send HELLO message to slave ... 15
Figure 2.13 Slave response with HELLO message .. 15
Figure 2.14 Master query local display information .. 16
Figure 2.15 Slave query local display information ... 16
Figure 2.16 Master send data size message to slave ... 17
Figure 2.17 Master send raw data of text to slave ... 17
Figure 2.18 Slave send local display information to master ... 18
Figure 2.19 Master adjudge display area of each device ... 18
Figure 2.20 The result is Master: 30*15, and slave: 35*15 ... 19
Figure 2.21 Master send display area message to slave ... 19
Figure 2.22 Master send CHANGEMODE message to slave .. 20
Figure 2.23 Slave response with CHANGEOK message to master .. 20
Figure 2.24 Master change to new display mode ... 21
Figure 2.24 Master display the partial text on the screen .. 21
Figure 2.25 Slave change to new display mode ... 22
Figure 2.26 Slave display partial text on the screen .. 22
Figure 2.27 User view and input with device .. 23
Figure 2.28 Master send CLOSE message to slave ... 23
Figure 2.29 Slave response with CLOSEOK message .. 24
Figure 2.30 Master close socket and network ... 24
Figure 2.31 Master change to original display mode .. 25
Figure 2.32 Master display in previous display mode .. 25
Figure 2.33 Slave close socket and network .. 26
Figure 2.34 Slave change to original display mode ... 26
Figure 2.35 Slave display in previous display mode ... 27
Figure 2.36 Another example of display text on multiple display devices 28
Figure 3.1 Software architecture of the implementation ... 30
Figure 3.2 AP Main UI and get network information on WM6 QVGA handset 30
Figure 3.3 Connection setting and load document on WM6 QVGA handset 31
Figure 3.4 AP Main UI and get network information on WM6 Landscape QVGA handset ... 31
Figure 3.5 Connection setting and load document on WM6 Landscape QVGA handset 31
Chapter 1 Introduction

Nowadays, most mobile phones equip with connect to Internet with CSD/GPRS, event with 3G communication. People use mobile phones to connect to Internet to browse web pages, send/read Email/MMS, view photos and play on-line games. These applications bring a gorgeous reading experience to handset users.

But for some application, such as traditional console to open a connection to access email, ftp, even BBS (Bulletin Board system), the tradition console is defined as a text output area of width about 80 ASCII characters width and column of 25 lines. But to recent various mobile phones, with different display screens and different font types, their screen may not meet the requirement of display such a content, to fit displaying issue, application usually need to load the content, or lunch the application in a wrap width/height display layout, but it usually make a big confusion and trouble to mobile phones users. Not only the console applications, even other viewer, like web browser, picture views, photo editor, when user try to use their handset to view large page content, they often get some confusion about the original content when they got the re-arrange layout.

1.1 Traditional Console output

Base on the definition of the terminal window size, not matter in Windows, Unix, Linux, any operating system, the windows size is 80 characters in width, and 25 lines in height. In the terminal windows, all command send and response the result to local user. User can input any text command in the terminal windows to access remote data, act as a client and acquire any service such get web page data, receive email, login BBS to read news, transfer files with FTP protocol, or play on-line game such as MOD.
Figure 1.1 To access FTP service by using traditional terminal console

Figure 1.2 To access BBS service by using traditional terminal console
1.2 Display Limitation Of Mobile Handset Device

Mobile phones from the basic function, just dial up and talk to other people, to the rich function about the play music, take snapshot by the attached camera, even equip with GPS to track their travel waypoint. No matter the low-end or hi-end device, their screens differ in width and height, their colors and pixels also are different to each others. By the way, the fonts display on the screen also differs, some handsets use only one fixed font style and size, but other handsets can change their font style to Italic, Bold or underline. But with these different display sizes, some display sizes, the columns and lines are usually less then the real layout of the web page, picture, or the terminal windows size, so application usually wrap the text, scale the picture, but the result are usually hard to read.

![Figure 1.3 Wrap the text layout to meet the screen size for reading](image-url)
1.3 Motivation

When mobile phones are equipped with advanced modules such as WIFI, Bluetooth, IrDA, people can use these modules to access Internet services, to connect to other mobile phones, and with the common open platform, I want to connect two mobile phones together, display single document on these two display screens, to view synchronously on the devices. With the new protocol, user have two or more mobile phones can read document with a large virtual display screen.

With the handset wireless connection capabilities, I define the handshake of the display size of different model handset, and try to gather their different screen display as a large display. Try to open a document, and split the portion data on each device in the device group, make the view size and layout keep the original style the document present. Provide a handshake to connect two devices, a new protocol to negotiate handset display properties. With the split display mechanism, User can put two or even more device together as a big screen, use the physical wireless connection to act as server/client handsets, to operate
viewing one documents with the device array.

To split one document on multiple display devices, the idea come from the my work experience, when we development the email client to retrieve mail from the POP3 server, or send email with SMTP server, the terminal console size are much different in PC and on the handset, even the later development, I wish to use the console window to access BBS or other Internet services, but I feel hard to view the command text in my mobile handset, due to my small display size. So I try to construct the new idea and apply it to patent, and final I got the patent of US Patent No. 7242369, China Patent No. ZL 2005 1 0118170.0, Taiwan Patent No. I276991, but the real implementation is not realized due to the product schedule. Until now, most handsets may be implemented on base of Microsoft Windows Mobile OS, it provide a basic development with many APIs and user can build customized applications, with the new defined socket APIs, we can get an open environment to setup the connections, send/receive data, and my proposed protocol can implemented as a real module to run in the common handsets with the open API.
Chapter 2 The Proposed Method

In this chapter, I propose a novel method of displaying text on multiple devices, use sockets to connect two mobile phones, load contents and send commands to each device, to browse content simultaneously.

Display text on multiple display devices. The multiple display devices include a master device with a master display and at least one slave device with a slave display. The method includes establishing communications between the master device and the slave device, dividing the text into a first part and a second part based on a first display dimension of the master display and a second display dimension of the slave display, transmitting the second part to the slave device, and simultaneously displaying the first part on the master display and the second part on the slave display. For each individual line of text that is displayed on both the master display and the slave display, a fraction of text is displayed on the master display and a remaining fraction of text is displayed on the slave display.

The protocol consist four states, the initial state, the information change state, display mode change state, and final state. All commands in each states, are human readable text, each is prefixed with MTD, and next field is the role, and the final field is the operation name. The prototype of the command is MTD_role_operation, the detail description will list in the following.

2.1 Initial State

In the initial state, master and slave device initial their network layer and the socket modules, then master connect to slave, after setup the connection with slave, master send the MTD_MASTER_HELLO message to slave, slave receive the message and make decision with the message, if slave choose to reject the operation , slave will send back MTD_SLAVE_REJECT message to master, and the whole protocol just exit now. Other wise,
slave agree with the current operation and send back MTD_SLAVE_HELLO message to master.

![Flow chart of the initial state](image)

Figure 2.1 Flow chart of the initial state

2.2 Information change state

In the state, master and slave need to exchange the display information of their screen display screen and the data of document, master and slave query their local display screen size, then master send text data to slave, master send MTD_MASTER_DATASIZE_###, ### is the size of the documents, and send the raw data of the document to slave, slave get the size of the document and receive the full data of the documents, and just send back the local display information to master with command MTD_SLAVE_INFO_C###L###, ### means the width of the columns and the height of lines, after master gather the information of slave’s device, master need to adjudge display area of each device, I just propose the simplest way to the adjustments, that is to combine the width of the two device, and choose the smaller height of the two devices, the reason just try to extend the virtual screen width as the sum of the two
device, and for the layout correction of the text displaying, the smaller height is the suitable result to view the documents.

After master make the adjustment of the display area, master send MTD_AREA_M###*###S###*### to slave, in the command, consist of master display ration and slave display ratio information.

Figure 2.2 Flow chart of the information change state
2.3 Display mode change state

After master and slave negotiate the final display ratio, master will send MTD_MASTER_CHANGEMODE command to slave, slave receive the command and ready to change to new display mode, just send back the MTD_SLAVE_CHANGE message to master. Master and slave will change to the new display mode in the current state, and user will see a new display mode on the two display device, and user can view or do any operation with the application.

With 99 percent of precincts reporting, Obama had 55 percent of the vote. Clinton was second with 27 percent, followed by Edwards, with 18 percent. Obama's victory capped a heated contest in South Carolina, the first Democratic primary in the

The choice in this election is not between regions or religions or genders," Obama said. "It's not about rich versus poor; young versus old; and it is not about black versus white. "It's about the past versus the future."
Figure 2.4 Flow chart of the display mode change state
2.4 Final state

When user want to exit the multiple display mode, user request the operation, and master will send MTD_MASTER_CLOSE command to slave, slave just response MTD_SLAVE_CLOSEOK message to master, master and slave need to close their socket and network functions gracefully and change their display mode to previous display mode, and the protocol just complete.

![Flow chart of the final state](image)

Figure 2.5 Flow chart of the final state

2.5 Multiple display examples

In the case, if we use two handset, one screen display is 30 columns and 15 lines, and the other handset is 35 columns and 20 lines, after open a documents about 80 columns and 25 lines, the message flow and view result are listed as following.
Figure 2.6 Two handsets with different display size

Figure 2.7 Open document on master device
Figure 2.8 Master display the text in original display mode

Figure 2.9 Master initial the network layer
Figure 2.10 Slave initial the network layer

Figure 2.11 Master connect to slave
Figure 2.12 Master send HELLO message to slave

Figure 2.13 Slave response with HELLO message
Figure 2.14 Master query local display information

Figure 2.15 Slave query local display information
Figure 2.16 Master send data size message to slave

Figure 2.17 Master send raw data of text to slave
Figure 2.18 Slave send local display information to master

Figure 2.19 Master adjudge display area of each device
Figure 2.20 The result is Master: 30*15, and slave: 35*15

Figure 2.21 Master send display area message to slave
Figure 2.22 Master send CHANGEMODE message to slave

Figure 2.23 Slave response with CHANGEOK message to master
Figure 2.24 Master change to new display mode

Figure 2.24 Master display the partial text on the screen
Figure 2.25 Slave change to new display mode

Figure 2.26 Slave display partial text on the screen
Figure 2.27 User view and input with device

Figure 2.28 Master send CLOSE message to slave
Figure 2.29 Slave response with CLOSEOK message

Figure 2.30 Master close socket and network
Figure 2.31 Master change to original display mode

Figure 2.32 Master display in previous display mode
Figure 2.33 Slave close socket and network

Figure 2.34 Slave change to original display mode
Figure 2.35 Slave display in previous display mode
Figure 2.36 Another example of display text on multiple display devices

"The choice in this election is not between regions or religions or genders," Obama said. "It's not about rich versus poor, young versus old, and it is not about black versus white. It's about the past versus the future." With 99 percent of precincts reporting, Obama had 55 percent of the vote; Clinton was second with 27 percent, followed by Edwards, with 18 percent. Obama's victory capped a heated contest in South Carolina, the first Democratic primary in the South and the first with a largely African-American electorate. Obama, who is hoping to become the nation's first African-American president, did well with black voters, who made up about half of Saturday's electorate, according to exit polls. Black voters supported the Illinois senator by a margin of more than 4-to-1 over his nearest rival, exit polls indicate.
Chapter 3 Development Environment

In this chapter, our proposed protocol is implemented on real mobile phone and simulator. We choose VC2005 and Windows Mobile 6 SDK to develop the application on the WM6 handset. With WM6 simulator and two real WM6 mobile phones, we implement our method on the real target device and verify the mechanism.

3.1 Software Architecture

The view of the software architecture, program first gather the display information, the information contains the local display size, and will negotiate in the later handshake. After gather information, program setup the wireless connection, it base on the windows socket API, the physical layer may be WIFI or Bluetooth, even the IR transmitter. To setup up network, also need to invoke BSD like socket API, such as listen(), bind(), accept(), send() and recv(). To catch command in a independent process, create a persistent thread, in the thread will send/receive command data, according to input command, master and slave handset will response to various action, like scroll page of text display, refresh screen. In the final step, when user requests to exit the protocol, send close command. When the thread receives close command, just finalize network functionality, and graceful exit the protocol.
3.2 User Interface

To acquire user operation, program design a simple user interface, for the use to setup network connection, Bluetooth configuration, and a working area to output debug message, and the main window to display text on master and slave device.
Figure 3.3 Connection setting and load document on WM6 QVGA handset

Figure 3.4 AP Main UI and get network information on WM6 Landscape QVGA handset

Figure 3.5 Connection setting and load document on WM6 Landscape QVGA handset
3.3 Enhancements and Applications

In our protocol and the implementation, just process the simplest content about pure text data. But lot of multimedia contents, such as graphic data (BMP, JPEG, GIF), vector file (Flash) or movie clips (AVI, MPEG, 3GP) files. With applying our proposed protocol, we can communicate two handsets, negotiate display capability, and with a suitable engine to decode such multimedia contents, we can split the presentation on two or more heterogeneous mobile devices. And develop more fantasy applications, for example, a group mobile phones grouped as a huge TV wall, displaying a interesting movie synchronously, or design a funny mobile KTV service, using two handsets, one act as the master device, the other act as the slave device. They both playback the same music, but just display the different lyric on each device, and the users can held such device to sing a romantic love song with together.

Figure 3.6 Multiple display application – mobile KTV service
Chapter 4 Conclusion

In this thesis, we propose a novel method of displaying content on multiple devices, with the protocol we calculate two different handset display capabilities, and calculate the text content properties to figure out a best display dispatching on mobile phones, setup the connection between heterogeneous devices, display contents and operate with view/page-up/page-down, the content display action simultaneously on different devices. I also implement the server/client application on device to verify our mechanism work well on the real products.

In this thesis, we only consider loading single text content and display that on two heterogeneous mobile phones, we just prove the concept can be implemented on nowadays mobile phones with limited wireless connection capability, the protocol and mechanism can be extend to multiple device array and accepted as a transport module, to view more complicated multimedia content with a collection of mobile phones, event the hot application such as on-line game or movie show.
Reference

