Contents

Acknowledge (in Chinese)..I
Abstract (in Chinese)...II
Abstract (in English)...III
Figure Captions..IX
Chapter 1. Introduction.. 1
 1.1 General Background and Motivation... 1
 1.2 Outline of the Dissertation.. 2
Chapter 2. Use of Si$^+$ pre-ion-implantation on Si substrate to enhance the strain
relaxation of the Ge$_x$Si$_{1-x}$ metamorphic buffer layer for the growth of Ge layer
on Si substrate... 6
 2.1 Introduction... 6
 2.2 Experimental.. 7
 2.3 Results and discussion.. 8
 2.4 Conclusions..12
Chapter 3. Growth of epitaxial GaAs on Si substrates for high-speed electronic
applications... 21
 3.1 Introduction... 21
 3.2 Experimental.. 23
 3.3 Results and discussion... 24
 3.4 Conclusions..29
Chapter 4. An AlGaAs/InGaAs HEMT’s on Si substrates with Si$^+$ pre ion
implantation and Ge$_{0.95}$Si$_{0.05}$/Ge$_{0.9}$Si$_{0.1}$/Ge$_{0.8}$Si$_{0.2}$ metamorphic buffer.............41
 4.1 Introduction...41
4.2 Experimental...43
4.3 Results and discussion..44
4.4 Conclusions...49

Chapter 5. Growth of InAs channel HEMT on Si substrates for high-speed
electronic applications...62
 5.1 Introduction...62
 5.2 Experimental..63
 5.3 Results and discussion...64
 5.4 Conclusions...72

Chapter 6. Self-assembled In_{0.22}Ga_{0.78}As quantum dots grown on metamorphic
GaAs/Ge/Ge_{1-x}Si_{x} /Si substrates...83
 6.1 Introduction...83
 6.2 Experimental..84
 6.3 Results and discussion...85
 6.4 Conclusions...91

Chapter 7. Conclusions..104

Vita (in Chinese)

Publication List
Figure Captions

Chapter 2

Fig. 2-1. The layer structure and the growth conditions for the Ge film grown on the Si substrate with Ge$_x$Si$_{1-x}$ metamorphic buffer layers. Note that Ge$_x$Si$_{1-x}$ was grown at two growth rates, the Ge composition set at 80% and 90%, and the Si substrate implanted with high dose Si$^+$ ions.

Fig. 2-2. Cross-sectional TEM images of sample (a) with a Si$^+$ pre-ion implantation into the Si substrate; the inserted image is the high-resolution TEM image at the interface between the Ge$_x$Si$_{1-x}$ metamorphic layer and the Si substrate. (b) the Ge$_x$Si$_{1-x}$ metamorphic grown on the Si substrate without a Si$^+$ pre-ion implantation into the Si substrate.

Fig. 2-3 (a) Double crystal x-ray data indicating variations at a [004] orientation for the Ge$_x$Si$_{1-x}$ metamorphic buffer layer on the Si substrate with a Si$^+$ pre-ion-implantation. (b) Double crystal x-ray difference data indicating variations at [004] orientation for the Ge$_x$Si$_{1-x}$ metamorphic buffer layer on the Si substrate without a Si$^+$ pre-ion-implantation.

Fig. 2-4 (a) Reciprocal Space Map data of [004] orientation of Ge$_x$Si$_{1-x}$ metamorphic buffer layer on Si substrate with Si$^+$ pre-ion-implantation. (b) Reciprocal Space Map data of [224] orientation of Ge$_x$Si$_{1-x}$ metamorphic buffer layer on Si substrate with Si$^+$ pre-ion-implantation.

Fig. 2-5 AFM image of the surface morphology of the sample with a Si$^+$ pre-ion implantation. The root mean square (RMS) of the roughness is 0.38nm.

Fig. 2-6 Nomarski image of the etched Ge film, the etch pits arise from threading dislocations.
Chapter 3

Fig. 3-1 Schematic diagram of GaAs MESFETs on Si substrate

Fig. 3-2 The different low growth temperature GaAs buffer layers grown on the composite substrate structure with Ge/Si$_x$Ge$_{1-x}$/Si substrate (Si substrate without off angle). (a) 550°C (b) 500°C (c) 450°C. The scanned area is 25 \(\mu \)m x 25 \(\mu \)m.

Fig. 3-3 AFM image of the GaAs grown on the composite structure with Ge/Si$_x$Ge$_{1-x}$/Si (Si substrate with 6° off toward <110>). The scanning area is 25 \(\mu \)m x 25 \(\mu \)m.

Fig. 3-4 SIMS profiles of As, Ga and Ge in a 2 \(\mu \)m thick GaAs layer grown on Si with different off angle toward [110] direction. (a) 0 off (b) 4° off (c) 6° off.

Fig. 3-5 Transmission electron micrograph of grown structure with from Si to Ge buffer layer to GaAs transitions. (a) GaAs layer grown on Si substrate with 6° off (100) toward <110> direction. (b) GaAs layer grown on Si substrate without off angle.

Fig. 3-6 Double crystal x-ray diffraction pattern of (a) Ge and SiGe metamorphic layer grown on a Si substrate (b) GaAs layer grown on a Ge/Si$_x$Ge$_{1-x}$/Si substrate.

Fig. 3-7 Transmission electron micrograph of a structure grown with Si to Ge buffer layers and a transition to GaAs transitions with AlGaAs/GaAs superlattice in the GaAs layer.

Chapter 4

Fig. 4-1 The layer structure and the growth conditions for InGaAs channel HEMT grown on Si substrate with Ge$_x$Si$_{1-x}$ metamorphic buffer layers. Note that Ge$_x$Si$_{1-x}$ was grown with two step growth with the Ge composition set at 80%, 90% and 95%.

Fig. 4-2 (a) Double crystal x-ray difference data at [004] orientation for a HEMT structure grown on a Si substrate (b) Double crystal x-ray difference data at [004] orientation for a HEMT structure grown on a Ge substrate.
Fig. 4-3(a) The cross section TEM image of a HEMT structure grown on Si substrate. (b) The cross section TEM image of the interface between the GaAs layer and Ge_{0.95}Si_{0.05}/Ge_{0.9}Si_{0.1}/Ge_{0.8}Si_{0.2} metamorphic buffer layer.

Fig. 4-4 The AFM image of HEMT structure grown on Si substrate. The root mean square (RMS) of the roughness is 0.38nm.

Fig. 4-5 SIMS profiles of As, Ga and Ge in a 2 μm thick GaAs layer grown on Si with 6° off angle toward [110] direction.

Fig. 4-6 Leakage current as a function of the bias voltage. The data was measured on a pad pattern of 300 μm wide with a spacing of 10 μm between pads.

Fig. 4-7 (a) I-V characteristics of a 0.35 μm × 100μm AlGaAs/InGaAs HEMT on a Si substrate with Ge/GeSi metamorphic layer. (b) Transconductance and drain-source current vs. V_{GS} of a 0.35 μm × 100μm AlGaAs/InGaAs HEMT on the Si substrate with Ge/GeSi metamorphic layer.

Fig. 4-8 (a) I-V characteristics of a 0.35 μm × 100μm AlGaAs/InGaAs HEMT on the Ge substrate.(b) Transconductance and drain-source current vs. V_{GS} of the 0.35 μm × 100μm HEMT on the Ge substrate.

Chapter 5

Fig. 5-1 (a) Schematic diagram of InAs MHEMT on GaAs substrate.

(b) Schematic diagram of InAs MHEMT on Si substrate

Fig. 5-2 Cross-sectional TEM image of InAs MHEMT epilayer structure on Si

Fig. 5-3 (a) The cross-section TEM image of antiphase boundary formation at GaAs layer on Si without off angle. (b) The suppression of antiphase boundary formation by Si substrate 6° off angle toward to [110].
Fig. 5-4 (a) The comparison double crystal x-ray [004] orientation of crystalline quality of InAs MHEMT structure on GaAs substrate and Si substrate. (b) The detail comparison of InAs MHEMT structure on GaAs substrate and Si.

Fig. 5-5 High resolution TEM image of AlSb nucleation on (a) GaAs substrate (b) Si substrate

Fig. 5-6 High resolution TEM image of InAs channel on Si substrate

Fig. 5-7 (a) Reciprocal Space Map data [004] orientation of InAs/AlGaSb on GaAs substrate (b) Reciprocal Space Map data [004] orientation of InAs/AlGaSb on Si substrate 6° off angle toward to [110]

Fig. 5-8 AFM image of InAs MHEMT on GaAs substrate

Fig. 5-9 AFM image of InAs MHEMT on Si substrate

Chapter 6

Fig. 6-1. Schematic diagram of InGaAs QDs on Si substrate.

Fig. 6-2. Cross-sectional TEM image of the epitaxial structure.

Fig. 6-3. (a) AFM image of the surface of the Ge layer. (b) The Quality of Ge layer of FWHM of X-ray rocking curves.

Fig. 6-4. AFM scans (10 μm x 10 μm) of the typical GaAs grown on the composite structure with Ge/SiGe/Si sub with 6° off-degree toward [110] (b) The Quality of GaAs layer of FWHM of X-ray rocking curves.

Fig. 6-5. (a) AFM scans (10 μm x 10 μm) of the typical GaAs grown on the composite structure with Ge/SiGe/Si sub with 6° off-degree toward <110>. (b) The TEM micrograph of GaA layer grown on Si sub. with 6° off-degree toward <110> shows the APBs cross the GaAs layer.

Fig. 6-6. Bright-field cross-section TEM image of the In0.22Ga0.78As QDs formed on GaAs/Ge/SiGe/Si.
Fig. 6-7. Distribution of InGaAs QDs grown on misorientated Si substrate. (a) 6° off-degree toward <110> (b) 0° off-degree toward <110>.

Fig. 6-8. PL measurement of the InGaAs QDs grown on misorientated Si substrate. (a) 6° off-degree toward <110> (b) 0° off-degree toward <110>

Fig. 6-9. AFM images of Self-assemble InGaAs QDs grown at different temperatures. (a) 450 °C (b) 480°C (c) 520°C

Fig. 6-10. Average size distribution of the In_{0.22}Ga_{0.78}As QDs grown at different temperatures. (a) 450°C (b) 480°C (c) 520°C