Characterization and Mitigation of Biofouling on RO Membrane in Seawater Desalination

研究生：楊惠玲
指導教授：黃志彬 教授

中華民國九十八年七月
海水淡化程序 RO 膜生物性阻塞之特性及減緩

學生：楊惠玲
指導教授：黃志彬

國立交通大學環境工程研究所

摘 要

目前國內澎湖、金門、馬祖等島嶼型態地區因地表水源缺乏，故目前以海淡廠或鹹井水淡化廠為當地民生用水之主要供給來源，其中淡化程序之水處理方式以 RO 逆滲透為主，然目前各海淡廠及鹹井水淡化廠皆面臨嚴重的薄膜阻塞問題，並未有進一步之原因探討，故檢視阻塞原因及改善操作方式實為現階段刻不容緩的議題。故本研究首先乃針對現有海淡廠之 RO 膜阻塞原因進行鑑定，提供作為淨水程序操作上的改善參考依據，此外，更進一步於澎湖烏崁海淡廠設立模型廠，針對國外及本研究群之研究成果提出生物性積垢為海淡廠最嚴重的阻塞型態，進行深入探討，包括生物性積垢之微生物活性探討、季節及 RO 濃縮倍率對生物性積垢之影響，進而進行奈米銀 RO 膜改質，探討其對生物性積垢之控制，其中針對微生物之活性主要利用 PKH26 菌染劑進行染色觀察與計數，定義微生物隨濾程之增生率，探討其對 RO 膜操作效能之影響，於每一試程結束後，進行積垢物之萃取分析及其他儀器分析，以全面瞭解造成 RO 膜阻塞之成因。
Characterization and Mitigation of Biofouling on RO Membrane in Seawater Desalination

Student: Hui-Ling Yang
Advisors: Dr. Chihpin Huang

Institute of Environmental Engineering
National Chiao Tung University

ABSTRACT

Penghu archipelago, Kinmen, and Matsu islands are arid area, where water supply depends solely on the desalination of seawater and brackish groundwater. The desalination plants face serious fouling problems similar to those in other parts of the world. The operators have being struggling to solve these problems with frequent cleaning and switching to more powerful cleaning reagents through trial and error. Effective membrane cleaning relies on a thorough understanding of the nature of the foulant. In this study, a seawater RO (SWRO) membranes was autopsied and the characteristics of fouling were diagnosed to provide the plants with information to aid the improvement of the systems regarding fouling mitigation. Literatures and preliminary studies have suggested that biofouling is the major cause of fouling in the SWRO system. A pilot study was established in the Wukan SWRO plant. The survival ratio of microbes deposited on the membranes from the inlet was estimated to investigate the effects of seasonal change and concentration ratio of brine on the microbial activity on the membranes. Mitigation of biofouling was explored by modifying RO membranes with silver nanoparticles. The proliferation of microbes was identified by using PKH26 as the survival cell stain. Foulants was extracted and analyzed at the end of tests provided for discussing with biofouling.
目 錄

摘 要 ...i
ABSTRACT ...ii
目 錄 ...iii
表 目 錄 ...v
圖 目 錄 ...vi
第一章 導論 ...1
 1.1 緣起 ...1
 1.2 研究目的 ...2
 1.3 論文架構 ...2
第二章 文獻回顧 ...4
 2.1 國內水淡化處理廠之現況 ...4
 2.2 RO膜之阻塞種類與機制 ...6
 2.3 阻塞/結垢指標 ...9
 2.4 阻塞物之分析與鑑定 ..12
 2.5 海水微生物之特性 ...14
 2.6 生物性阻塞之控制 ..16
 2.7 奈米銀之抗菌
 2.7.1 奈米銀之抗菌原理與效果 ..19
 2.7.2 含銀材料製備方法 ..20
第三章 研究方法及實驗材料 ..22
 3.1 研究架構 ...22
 3.2 研究方法 ...24
 3.2.1 實廠RO膜之阻塞特性分析 ...24
 3.2.2 海淡廠RO膜之生物性阻塞特性探討 ...27
 3.2.3 奈米銀改質對生物性阻塞之預防 ..28
 3.3 研究設備及分析方法 ...30
 3.3.1 平板式RO膜試驗模型廠 ...30
 3.3.2 水質及膜阻塞物分析方法 ...33
 3.3.3 微生物之黏附與生長定量 ...33
 3.3.4 微生物菌相分析 ...37
第四章 鹹井水淡化及海水淡化廠RO膜之阻塞特性 ..39
 4.1 鹹井水淡化廠之RO膜阻塞特性 ..39
 4.2 海水淡化廠之RO膜阻塞特性 ..47
 4.3 小結 ...52
第五章 海淡廠RO膜之生物性阻塞特性探討 ...53
 5.1 原水水質特性 ...53
5.2 季節對生物性阻塞之影響

5.2.1 季節性之RO膜效能變化

5.2.2 膜表微生物之增長

5.2.3 非生物性阻塞物之分析

5.3 濃縮效應對生物性阻塞之影響

5.3.1 壓力套管中濃度變化對RO效能之影響

5.3.2 壓力套管中濃度變化對RO生物性阻塞之影響

5.3.3 菌種鑑定

5.4 小結

第六章 奈米銀改質對生物性阻塞之預防

6.1 奈米銀覆蓋RO膜及spacer

6.1.1 奈米銀覆蓋RO膜

6.1.2 奈米銀覆蓋spacer

6.2 奈米銀改質RO膜及spacer之抗菌

6.2.1 奈米銀改質RO膜及spacer對脫鹽之影響

6.2.2 奈米銀改質RO膜及spacer之抗菌效果

6.2.3 RO膜表面之微生物生長分佈特性

6.3 小結

第七章 結論與建議

7.1 結論

7.2 建議

參考文獻

附錄 A
表 2.1 國內水淡化處理廠整理表 5
表 2.2 历年文献所發展之阻塞/結垢指标 10
表 3.1 奈米銀顆粒還原之相關反應式 29
表 3.2 變性梯度膠之配製藥劑 38
表 5.1 試驗期間實廠砂濾後水冬夏季之進流水質及結垢潛勢 54
表 5.2 不同季節之膜表菌相變化 62
表 5.3 不同進流TDS濃度之膜表菌相變化 74
圖目錄

<table>
<thead>
<tr>
<th>圖</th>
<th>畫名</th>
<th>頁碼</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>論文架構</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>RO膜表面微生物之生長曲線圖</td>
<td>8</td>
</tr>
<tr>
<td>3.1</td>
<td>研究架構</td>
<td>23</td>
</tr>
<tr>
<td>3.2</td>
<td>壓力管RO膜填充方式</td>
<td>25</td>
</tr>
<tr>
<td>3.3</td>
<td>二階段RO膜組示意圖</td>
<td>25</td>
</tr>
<tr>
<td>3.4</td>
<td>RO膜解剖示意圖</td>
<td>26</td>
</tr>
<tr>
<td>3.5</td>
<td>RO平板試驗模型廠</td>
<td>31</td>
</tr>
<tr>
<td>3.6</td>
<td>RO平板試驗模型</td>
<td>32</td>
</tr>
<tr>
<td>3.7</td>
<td>RO膜表面PKH-26染色之微生物紅色螢光顯微照片</td>
<td>34</td>
</tr>
<tr>
<td>3.8</td>
<td>微生物計數程序</td>
<td>36</td>
</tr>
<tr>
<td>3.9</td>
<td>PCR反應條件</td>
<td>37</td>
</tr>
<tr>
<td>4.1</td>
<td>白沙淡化廠RO膜攤開照片</td>
<td>40</td>
</tr>
<tr>
<td>4.2</td>
<td>白沙淡化廠RO膜400×顯微照片</td>
<td>40</td>
</tr>
<tr>
<td>4.3</td>
<td>白沙淡化廠RO膜10000×電子顯微照片</td>
<td>40</td>
</tr>
<tr>
<td>4.4</td>
<td>白沙淡化廠RO膜表面累積有機物之總量分布</td>
<td>42</td>
</tr>
<tr>
<td>4.5</td>
<td>白沙淡化廠RO膜表面微粒化殘餘灰份</td>
<td>42</td>
</tr>
<tr>
<td>4.6</td>
<td>白沙淡化廠RO膜表面累積結垢之總量分布</td>
<td>44</td>
</tr>
<tr>
<td>4.7</td>
<td>白沙淡化廠RO膜表面總菌數之分布</td>
<td>44</td>
</tr>
<tr>
<td>4.8</td>
<td>白沙淡化廠RO膜表面總菌數之分布</td>
<td>46</td>
</tr>
<tr>
<td>4.9</td>
<td>白沙淡化廠RO膜FTIR圖譜</td>
<td>46</td>
</tr>
<tr>
<td>4.10</td>
<td>烏崁海淡廠一廠RO膜解剖攤開照片</td>
<td>48</td>
</tr>
<tr>
<td>4.11</td>
<td>烏崁海淡廠一廠RO膜表面累積元素總量百分比</td>
<td>48</td>
</tr>
<tr>
<td>4.12</td>
<td>烏崁海淡廠一廠RO膜FTIR分析圖譜</td>
<td>50</td>
</tr>
<tr>
<td>4.13</td>
<td>烏崁海淡廠一廠RO膜表面之總菌數分布</td>
<td>51</td>
</tr>
<tr>
<td>4.14</td>
<td>烏崁海淡廠一廠RO膜10000×電子顯微影像</td>
<td>51</td>
</tr>
<tr>
<td>5.1</td>
<td>不同季節RO膜之通量隨操作時間之變化</td>
<td>56</td>
</tr>
<tr>
<td>5.2</td>
<td>不同季節TDS去除率随操作時間之變化</td>
<td>57</td>
</tr>
<tr>
<td>5.3</td>
<td>不同季節脈衝微物質量隨操作時間之變化</td>
<td>58</td>
</tr>
<tr>
<td>5.4</td>
<td>不同季節膜表之增生與新黏附微生物量隨操作時間之變化</td>
<td>60</td>
</tr>
<tr>
<td>5.5</td>
<td>不同季節下RO膜之膜表FTIR圖譜</td>
<td>64</td>
</tr>
<tr>
<td>5.6</td>
<td>不同季節下RO膜表面累積各種元素含量</td>
<td>67</td>
</tr>
<tr>
<td>5.7</td>
<td>不同進流TDS濃度下隨操作時間RO膜之總水通量衰減</td>
<td>69</td>
</tr>
<tr>
<td>5.8</td>
<td>不同進流TDS濃度下隨操作時間之TDS去除率變化</td>
<td>70</td>
</tr>
<tr>
<td>5.9</td>
<td>不同進流TDS濃度下膜表面總累積/增生/黏附之微生物量變化</td>
<td>72</td>
</tr>
<tr>
<td>5.10</td>
<td>不同進流TDS濃度之RO膜表FTIR圖譜</td>
<td>76</td>
</tr>
<tr>
<td>6.1</td>
<td>奈米銀改質RO膜程序之建立</td>
<td>79</td>
</tr>
</tbody>
</table>
圖 6.2 RO膜以方法A改質後之電子顯微照片...80
圖 6.3 RO膜以方法B改質後之電子顯微照片...81
圖 6.4 RO膜以方法C改質後之電子顯微照片...82
圖 6.5 spacer表面改質後之電子顯微照片...84
圖 6.6 表面覆銀之RO膜及spacer電子顯微照片...85
圖 6.7 表面覆銀試驗之產水通量變化..88
圖 6.8 表面覆銀試驗之TDS去除率變化..89
圖 6.9 表面覆銀試驗之膜表累積/增生/黏附微生物量之變化.................................92
圖 6.10 表面覆銀試驗之膜表堆積微生物分佈隨操作時間之變化........................94
第一章 導論

1.1 緣起

目前國內之海淡廠或鹹井水淡化廠多分布於澎湖、金門、馬祖等島嶼型態之地區，由於土地面積及氣候條件之限制，導致該地區之河水及雨水十分匱乏，因此其水公司之引用水源僅能依賴有限的地下水及海水，故目前主要以海水淡化廠或鹹井水淡化廠供給當地之民生用水。其中淡化程序之水處理方式則以 RO 逆滲透為主，然目前各海淡廠及鹹井水淡化廠皆面臨嚴重的薄膜阻塞問題，並未有進一步之原因探討，因此，檢視阻塞原因及改善操作方式實為現階段刻不容緩的研究議題。

除此之外，台灣本島隨著高科技產業之蓬勃發展，其用水需求量大增，加上原用以提供作為水源之河川湖泊，如今多已面臨嚴重之污染，如欲持續作為飲用水水源則必定要增加水處理成本，且衍生後續消毒副產物問題，此外，每逢颱風季節，高濁水問題常導致水處理廠暫時無法供水，基於上述之因素，水公司必須尋找新的替代水源，方能解決缺水之窘境。然而除了地表水外，目前國內對於地下水源已逐漸採取減抽政策，包括澎湖在內，因此未來尋找替代水源之方案僅能仰賴大海，如此更加迫切需要解決目前國內海淡廠所面臨之嚴重阻塞問題，以作為未來新廠設置之參考。

故本研究之目的乃在於釐清現有海淡廠及鹹井水淡化廠之薄膜阻塞原因，唯有如此，方能針對問題所在，提出最適當之解決方案，提供淨水廠淨水程序操作上之改善參考依據，此外，本研究更進一步針對國外經驗所提出之淡化廠最常見且最嚴重之生物性阻塞，進行深入探討，以期對生物性阻塞有更加明確的瞭解，並對此提出有效之解決方法。
1.2 研究目的

本研究除對國內逆滲透膜(reverse osmosis, RO)阻塞現況進行分析之外，並針對生物性阻塞做深入研究，並提出解決改善方法之建議，研究目的包括以下幾點:

(1) 瞭解目前國內海淡廠與鹹井水淡化廠之 RO 膜阻塞型態及阻塞物之物種及分布鑑定。
(2) 評估季節及 RO 濃縮倍率對生物性阻塞之影響。
(3) 評估 RO 膜表面銀改質對生物性阻塞之抑制效果。

1.3 論文架構

本研究論文共包含七個章節，章節內容及架構如圖 1.1 所示，其中第一章至第三章分別為研究緣起與研究目的、文獻回顧及研究方法與實驗材料，其餘章節內容詳如下述:

第四章: 本章節描述鹹井水淡化廠 RO 膜(brackish water reverse osmosis, BWRO)及海水淡化廠 RO 膜之(seawater reverse osmosis, SWRO)阻塞特性。

第五章: 本章節探討了季節變化及 RO 之濃縮特性對生物性阻塞之影響及生物性阻塞與無機性阻塞之關係。

第六章: 本章節決定了本研究較適用之奈米銀披覆方法並探討覆銀 RO 膜與 spacer 之抗菌效果。

第七章: 為本研究針對研究結果之結論與建議。
圖 1.1 論文架構

BWRO: brackish water reverse osmosis
SWRO: seawater reverse osmosis
第二章 文獻回顧

2.1 國內水淡化處理廠之現況

目前國內所有提供民生用水之淡化廠共分布於澎湖、金門、馬祖三個地形為島嶼型態之行政區。由於屬於小型島嶼地理型態，導致雨水及河川之匱乏，飲用水水源僅能依賴少數小型水庫及有限的地下淡水與海水，因此澎湖縣目前各鄉市皆以海水淡化廠或鹹井水淡化廠為主要的供水來源，金門與馬祖也相繼興建多處淡化廠，以提供不足之水源。

國內現有提供民生用水之各淡化處理廠整理如表2.1，其中水處理程序多以RO逆滲透為主，除更新改善中之水處理廠將採取超濾(ultra filtration, UF)前處理外，RO前處理方式則僅有砂濾及匣式過濾(cartridge filter)。匣式過濾亦即微過濾(micro-filtration, MF)，則多採用3 µm及5 µm之濾芯(以5 µm為主)，其中鹹井水淡化廠常添加酸劑及抗垢劑，而海淡廠則多未添加任何藥劑。國外對於淡化廠之研究報導如Burashid & Hussain (2004)、El-Azizi & Omran (2002)及Baig & Al Kutbi (1998)等，指出前處理程序常包含有混凝、加氯/除氯等，國內之前處理程序明顯不足，導致目前各海淡廠及鹹井水淡化廠皆面臨嚴重的薄膜阻塞問題，因此，檢視阻塞原因及改善操作方式，實為現階段刻不容緩的研究議題。

台灣本島目前於桃園亦有海水淡化廠興建計畫，目的為降低新興工業區及高科技產業之缺水風險，減少石門水庫的供水壓力，計畫產水規模為30,000 CMD，除此之外，為因應目前及未來用水需求，經濟部水利署亦針對全台各地進行海淡廠開發之需求及開發場址之評估，可見海水淡化廠之興建已成為未來替代水源之首要選擇。
表 2.1 國內水淡化處理廠整理表

<table>
<thead>
<tr>
<th>地區</th>
<th>工程名稱</th>
<th>產水量(CMD)</th>
<th>完工時間</th>
<th>備註</th>
</tr>
</thead>
<tbody>
<tr>
<td>澎湖</td>
<td>烏崁海水淡化廠一廠</td>
<td>7000</td>
<td>89年</td>
<td>更新改善中</td>
</tr>
<tr>
<td></td>
<td>烏崁海水淡化廠二廠</td>
<td>3000</td>
<td>92年</td>
<td>委託運轉中</td>
</tr>
<tr>
<td></td>
<td>馬公海水淡化廠</td>
<td>5500</td>
<td>--</td>
<td>興建中</td>
</tr>
<tr>
<td></td>
<td>西嶼海水淡化廠</td>
<td>750</td>
<td>--</td>
<td>興建中</td>
</tr>
<tr>
<td></td>
<td>望安海水淡化廠</td>
<td>400</td>
<td>91年</td>
<td>更新改善中</td>
</tr>
<tr>
<td></td>
<td>虎井海水淡化廠</td>
<td>200</td>
<td>88年</td>
<td>委託運轉中</td>
</tr>
<tr>
<td></td>
<td>桶盤海水淡化廠</td>
<td>100</td>
<td>88年</td>
<td>委託運轉中</td>
</tr>
<tr>
<td></td>
<td>西嶼半鹹水淡化設備</td>
<td>1200</td>
<td>91年</td>
<td>委託運轉中</td>
</tr>
<tr>
<td></td>
<td>白沙半鹹水淡化設備</td>
<td>1200</td>
<td>91年</td>
<td>委託運轉中</td>
</tr>
<tr>
<td></td>
<td>七美半鹹水淡化設備</td>
<td>1000</td>
<td>90年</td>
<td>委託運轉中</td>
</tr>
<tr>
<td></td>
<td>將軍半鹹水淡化設備</td>
<td>180</td>
<td>--</td>
<td>試車中</td>
</tr>
<tr>
<td></td>
<td>成功半鹹水淡化設備</td>
<td>4000</td>
<td>91年</td>
<td>委託運轉中</td>
</tr>
<tr>
<td>金門</td>
<td>金門海水淡化廠</td>
<td>2000</td>
<td>89年</td>
<td>委託運轉中</td>
</tr>
<tr>
<td></td>
<td>南竿海水淡化廠(一期/二期)</td>
<td>500/500</td>
<td>86/89年</td>
<td>一期目前已停止運轉/二期委託運轉中</td>
</tr>
<tr>
<td>馬祖</td>
<td>西莒海水淡化廠</td>
<td>500</td>
<td>94年</td>
<td>委託運轉中</td>
</tr>
<tr>
<td></td>
<td>北竿海水淡化廠</td>
<td>500</td>
<td>92年</td>
<td>委託運轉中</td>
</tr>
<tr>
<td></td>
<td>東引海水淡化廠</td>
<td>500</td>
<td>92年</td>
<td>委託運轉中</td>
</tr>
</tbody>
</table>

資料來源：經濟部水利署公務統計報表
2.2 RO 膜之阻塞種類與機制

由於目前國內各淡化廠之主要處理程序仍以 RO 處理系統為主，且皆面臨嚴重之膜阻塞問題，其造成系統之通量衰減、壓力增加，使得反洗頻率須隨之提升，增加操作成本；此外，生物性阻塞更可能導致膜之腐蝕，因此以下就常發生於 RO 膜表面之阻塞種類進行探討，一般可將其分為顆粒性及膠體性積垢、有機性阻塞、無機性阻塞及生物性阻塞。

顆粒性及膠體性積垢，一般包括有懸浮固體物及金屬膠體，如 SiO₂、Fe₂O₃、Al₂O₃ 等，一般而言，此類物質於 MF、UF之過濾程序中，阻塞機制為直接沉積於膜表面或進入薄膜孔洞之中，然由於 RO 膜之孔徑約小至 0.001 μm（小於 1000 MWCO），因此顆粒及膠體性積垢之形成機制，主要以表面沉澱或受其他具黏性有機質黏附為主。

關於有機性阻塞之相關研究，Dalvi et al. (2000) 指出一般海水中之有機物濃度約為 2 ~ 4 mg/L，其中約 99%之溶解性有機物以腐植質為代表，一般腐植質表面帶負電，且能與水分子產生氫鍵；因此其於水中相對地較為穩定。然而對於暴露於水中的任何表面，腐植酸將先行形成單層吸附，但厚度多小於 50 μm，並達平衡，不至對膜造成不可逆傷害；然當流速過快或經陽離子絮凝劑前處理，將導致腐植酸因過大之壓力降而凝結或於膜表面產生濃度極化現象，因而影響通量及去除率 (Winters, 1987)。

無機性阻塞即化學性積垢，主要因當水流經 RO 膜表面，滲透液不斷被移除，同時濃縮液不斷濃縮，當濃縮液之鈉類濃度被濃縮至超過某限值，則將產生鈉類沉澱析出，並於膜表面結垢，因此 RO 膜之無機性結垢主要受濃縮水之濃縮倍率影響 (Marwan et al., 1995; Al-Shammiri et al., 2005)。Sheikholeslami & Ong (2003) 指出經一階段 RO 膜後，其濃縮液濃度約可增加 2 倍，經二階段 RO 膜則可增至 4 ~ 5 倍。海水及鹹井水淡化廠之 RO 膜表面
最常見之無機結垢物包括有CaCO₃、CaSO₄、SrSO₄、BaSO₄、CaF及SiO₂等。

Petrucci & Rosellini, 2005)，不但微生物種與數量隨季節而改變，微生物之生理性特徵如細胞膜之親疏水性、代謝狀況及成長與否皆受環境的變化而有所改變，包括有溫度、pH、壓力與鹽度等(Munn, 2004)，因而導致生物性阻塞之控制更加複雜。

Bereschenko et al. (2008) 曾進行實廠 RO 序列之菌種分析，然而生物性阻塞隨不同之進流水而改變，如淡水或海水。許多海水微生物之細胞顆粒粒徑很小，如 Thermodiscus sp. (0.08 μm × 0.2 μm)及 Prochlorococcus sp. (直徑 0.6 μm) (Munn, 2004)，導致其極易通過 RO 系統之砂濾及微過濾 (1 μm、3 μm、5 μm) 濾芯，因而進入 RO 系統。圖 2.1 指出微生物族群之發展將歷經誘導期、對數累積期，而後達高原期(Flemming, 1997)，Byrne(2002)於其試驗中微生物族群之對數成長期約發生於操作之起始 5 天內，並於 40 天內有緩慢且少量之增加，並於 40 ～ 209 天呈現緩慢減少趨勢。顯示膜表面微生物族群發展於起始操作數天內即可達高原期。

![圖 2.1 RO膜表面微生物之生長曲線圖](Flemming, 1997)

誘導期 (Induction) 單對數累積期 (Log. Accumulation) 高原期 (Plateau)
2.3 阻塞/結垢指標

為提供 RO 系統設計者作為設計之依據，歷年陸續有研究針對膠體/顆粒性阻塞、無機性結垢及生物性阻塞分別提出適當之阻塞/結垢指標，本研究整理此類指標之主要關係式如表 2.2 所示。

就膠體/顆粒性阻塞而言，進流水之 SDI (silt density index)值，乃利用連續過濾試驗所求得，計算式如表 2.2 所示，其中，

$$ T_i \text{ 为起始收集 } 500 \text{ mL滤液所需之时间, } T_f \text{ 为历经过滤时间 } t \text{ 后(一般为 } 15 \text{ min, 亦即 } T_i), \text{ 收集 } 500 \text{ mL滤液所需之时间。其为最普适用以衡量水质是否适宜进入RO单元之重要指

標, 当SDI小於 } 2 \sim 3 \text{，方适於进入RO处理单元；然Leo & Wang (2001)之研究结果显示，即使进流水SDI值小至 } 0.3 \sim 0.6 \text{，阻塞依然发生，故SDI值并无法完全反映RO阻塞之潜势。}

歷年來許多學者著重於原水中結垢物形成潛勢之研究，如表 2.2 所示，各相關式主要考量原水中鹽濃度、離子強度、各鹽類溶解度、溫度、pH 值及 RO 水回收率等，並藉由濃縮水之鹽濃度與溶解度之比較，評估其結垢之潛勢。

目前用以評估生物性阻塞之指標尚未十分成熟，僅生物膜生成率 (biofilm formation rate, BFR)之定量具有指標意義，其乃利用微生物於單位時間內(通常為3個月)在表面上之增生量加以定量，該增生量以三磷酸腺苷 (adenosine triphosphate, ATP) 表示；BFR之慣用單位為「pg ATP/cm²-d」，即單位時間、單位面積所增加之ATP量，Vrouwenvelder & van der Kooij (2001)指出當BFR值範圍小於等於 1 pg ATP/cm²-d，表示系統可穩定操作2年不需清洗；BFR介於1~120 pg ATP/cm²-d，則生物性阻塞情形不明確；BFR大於120 pg ATP/cm²-d，則生物性阻塞將發生。
<table>
<thead>
<tr>
<th>Index investigated target</th>
<th>Associated equations</th>
<th>Meaning of values</th>
<th>Source literatures</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDI</td>
<td>(SDI = \frac{100 \times (1 - T_i / T_f)}{T_i})</td>
<td>0~3 Suitable for RO</td>
<td>ASTM standard test method D 4189-82</td>
</tr>
<tr>
<td>LSI, (pK_2 \approx 10.61 - 4.974 \times 10^{-5} T + 13.31 \times 10^{-6} T^2)</td>
<td>> 0 scale occur at equilibrium (P - 1.166 I^{0.5} + 0.3466 I) (pK_{sp} = 7.82 + 6.460 \times 10^{-7} T + 8.590 \times 10^{-6} T^2) (- 7.000 \times 10^{-5} P - 3.210 I^{0.5} + 1.073 I)</td>
<td>Butt et al., 1997a</td>
<td></td>
</tr>
<tr>
<td>LSI, (pK_{sp} \approx 7.82 + 6.460 \times 10^{-7} T + 8.590 \times 10^{-6} T^2)</td>
<td>0 solution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S&D</td>
<td>(S & DSI = pH - pH_{sat}) (pH_{sat} = pCa + pTA + K) (K = -0.7083 I^2 + 1.8798 I + 2.1727) (I = CF \cdot I_f = 0.5 CF \cdot \sum (M_{ii}) \cdot Z_i^2) (K_{20^\circ C} = 1.0511 I^2 - 5.3362 I^4 + 10.306 I^3 - 9.901 I^2) (+ 5.2596 I + 2.1481) (K_{35^\circ C} = 0.864 I^2 - 4.5428 I^4 + 9.177 I^3 - 9.3176 I^2) (+ 5.2427 I + 1.9988) (I = CF \cdot I_f = 0.5 CF \cdot \sum (M_{ii}) \cdot Z_i^2)</td>
<td>> 0 scaling < 0 no scaling</td>
<td>Stiff & Davis, 1952</td>
</tr>
<tr>
<td>SI</td>
<td>(SI = \frac{IP}{Ksp}) (IP = (M_{Cation}) \cdot (M_{SO_4})) (Ksp_{CaSO_4} = 0.0016 I^{0.6742}) (Ksp_{SrSO_4} = 0.00001 I^{0.6916}) (Ksp_{BaSO_4} = 0.000000007 I^{0.835})</td>
<td>> 1 scaling < 1 no scaling</td>
<td>Al-Shammari et al., 2005</td>
</tr>
<tr>
<td>SI(SiO_2)</td>
<td>(SI(SiO_2) = \frac{C_{SiO_2}}{C_{SiO_2}{sat}}) ((C{SiO_2}){temp} = 1.9872 Temp + 75.37) ((C{SiO_2}){lat} = (C{SiO_2})_{temp} \cdot PHCF) (PHCF = 0.229 \times (pH)^2 - 2.8803 \times pH + 9.6889)</td>
<td>> 1 scaling < 1 no scaling</td>
<td>Al-Shammari et al., 2005</td>
</tr>
<tr>
<td>BFR</td>
<td>BFR is defined as the slope in the plot of the relationship between ATP accumulation and operation time.</td>
<td>Mentioned in text</td>
<td>van der Kooij et al., 1995</td>
</tr>
<tr>
<td>Symbols</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_1: Initial time in seconds required to collect a 500 ml sample.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_f: Time in seconds required to collect a 500 ml sample after T_t.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_t: Total test time in minutes (fifteen min normally).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH: actual pH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA: toyal alkalinity as mg/L CaCO$_3$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T (Temp): temperature (°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P: pressure (psi)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I: ionic strength</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF: the correction/concentration factor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHCF: the pH correction factor for silica scaling potential</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y: the conversion/recovery</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M: molar concentration in mol/L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C: concentration of ion in mg/L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z_i: ionic valency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP: ion product (mg/L)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Subscripts

- b: brine
- f: feed
- sat: saturation

(a) The LSI modified by Butt et al., 1997a, so called LSI$_{Butt}$ in this study, is suitable for CaCO$_3$ scaling investigation of raw water with TDS up to 233,000 mg/L.
2.4 阻塞物之分析與鑑定

阻塞物與結垢物之分析則包含二部分，其一為萃取液之分析，另一部分則利用解剖之 RO 膜直接分析；前者有 Butt et al. (1995)、Dudley & Darton, (1996) 及 Gwon et al. (2003) 等研究所採用之感應耦合電漿質譜儀(inductively coupled plasma-mass spectrometer, ICP)、原子吸收光譜儀(atomic absorption spectrophotometer, AA)、離子層析儀(ion chromatograph system, IC) 等，主要針對萃取液之金屬元素及 SO₄²⁻、PO₄³⁻ 等陰離子做定量；後者包括有掃描式

RO 膜之阻塞型態與原水來源及前處理方法有極大之關係，以下整理歷年藉由 RO 膜之解剖所分析得之結；以瞭解各種水源及前處理方法一般可能造成之膜阻塞型態。

Dudley & Darton (1996) 解剖以河水為水源之發電廠 RO 膜，其於前處理程序中維持 1.5 mg/L 之自由餘氯，並在 5 μm 厘式濾芯前添加 SBS 除氯，另以六偏磷酸鈉 (sodium hexameta phosphate, SHMP) 為抗垢劑，分析結果顯示其 RO 膜表面有明顯之鐵及微生物阻塞。Schneider et al. (2005) 曾針對以加氯、混凝、砂濾、脫氯、5μm 厘式濾芯前處理之二階段 RO 膜系統，共 12 根膜之每根膜進行解剖分析 (每一壓力匣中有 6 根膜)，發現每根膜表面皆累積厚、黏、棕色且含生物之阻塞層，其中只有第二階段之最後一根膜表面則可測得不均勻之 BaSO₄結晶。Butt et al. (1995) 在模廠試驗中，以半鹹水為水源進行不同抗垢劑之添加對二階段 RO 膜表面阻塞之影響，藉由薄膜解剖發現，以添加 H₂SO₄ 及 SHMP 為前處理之試程其薄膜表面幾乎沒有結垢物可剝除，
然以羟基乙叉二膦酸(hydroxylidene diphosphate, HEDP)为抗垢剂之试验，其表面阻塞物以铝-硅酸盐为主，此外，第一阶段膜上有磷酸钙/镁形成，其磷酸根乃来自於抗垢剂本身；於其试验中，并未发现CaCO₃、SrSO₄、CaSO₄·2H₂O及SiO₂等结垢生成。Luo & Wang (2001)针对以地下水为水源之发电厂RO膜进行解剖分析，其前处理程序包含聚氯化铝(PACl)混凝、加氯、介质过滤、SBS、Flocon抗垢剂，发现该厂RO膜之阻塞型态為包括了颗粒、胶体(Si-Al-Fe)、疏水性有机物及微生物之複合型態，並以胶体及微生物阻塞为主。Gwon et al. (2003)则以半咸水进行UF前处理之模様试验，发现无机钙与有机硅为主要阻塞物，Fe则為造成不可逆阻塞之主因，且有机物沈积在膜表之第一層，無机質則位於有机質頂層，呈四角形型態。

2.5 海水微生物之特性

欲瞭解海水淡化RO膜之生物性阻塞特性，首當必須探討海水微生物之特性，當微生物进入RO系统，将面临物化环境之改变，主要包括有环境压力及盐度，海水淡化RO系统中约800 psi (55.2 bar)，盐度变化则随著RO膜管於压力套管的前後位置不同，而有所变化，並影响RO膜表面堆積微生物之生理特性，進而表现出不同形态之生物性阻塞特性。瞭解此類微生物之特性及分析造成生物性阻塞之前驱微生物，將有助於海淡厂设计時對於阻塞物之控制方式及前处理去除策略(Veza et al., 2008)。

海水微生物之生理特性受族群密度、週遭其餘微生物之影響極大，且微生物之状态如為自由懸浮或附著於颗粒表面之生物膜(如 marine snow)，其特性皆存在显著差异，實验室培養之海水菌种显示当细胞处于饥饿状态，则细胞将变小，且细胞体积傾向呈现球体；此外，细胞表面将較為疏水，并增加黏附至物體表面的機會，而微生物所释放之胞外聚合物(extracellular...
polymeric substances, EPS) 物化特性十分多變，其特性及數量又將受不同微生物種、水體基質濃度及環境因子所支配(Munn, 2004)。

大多數開放海洋菌種在海水中之體型非常小，主要是為了適應長期接近飢餓的狀態，且此類小型菌體之活性，比同樣海域裡的大型菌體之活性高，且大部分失活之細胞可在基質添加後顯現大量代謝活性；然而在開放海域裡具有代謝活性的小體型菌種，其體型乃為適應寡養的環境，以獲得營養鹽之有效利用。「可見但不可培養(viable but noncultureable, VBNC)」的特性存在許多格蘭氏陰性菌及少數格蘭氏陽性菌上，此現象在海水致病菌活性之研究上十分重要，因其不易被檢測，卻可能具有危險性；許多因子可導致細胞進入 VBNC 狀態，如失去營養源及 pH、溫度、壓力或鹽度的改變。處於 VBNC 狀態的菌體，可利用「放射性同位素追蹤技術(radiolabeling techniques)」、「直接視覺計數法(direct viable count)」及「核酸螢光染色法(nucleic-acid binding fluorochromes)」等方法進行檢測。當菌體處於對數成長期，大量增生導致面臨營養鹽之匱乏，成長與代謝不協調，菌體便以自體改變以保護 DNA、蛋白質及細胞膜。然而進入 VBNC 狀態的菌體，其代謝並不代表可以存活，無法培養亦不代表死亡，任何環境的改變都可能改變 VBNC 狀態菌體的命運，可能死亡或再度恢復成長繁殖能力，VBNC 狀態應是菌體處於冬眠的狀態(Munn, 2004)。

海水微生物對於壓力之適應範圍廣，自 1 atm 至 400 atm (1.013 ~ 405.2 bar)，而許多沿岸的海洋微生物僅能適應至 200 atm 之壓力，壓力愈高則生長率及代謝能力愈低(Munn, 2004)。

海水微生物一般具有嗜鹽的特性，不同於環境壓力，各種微生物具有其特定之嗜鹽範圍，例如於 Bacillus aeolius 僅能於 0.5 ~ 5% 鹽度的環境下成長(Gugliandolo et al, 2003)；Bacillus litoralis 無法在大於 11% 的鹽度下成長。
Winogradskyella poriferorum 成長所需之鹽度為 1～4% (Lau et al., 2005)。而 Marinospirillum minutulum 與 Marinospirillum megaterium 之最適生長氯化鈉濃度 (optimum NaCl concentration for growth, ONC) 為 2～3%，Marinomonas communis 及 Marinomonas Mediterranea 之 ONC 為 0.7～3% ，Marinobacterium georgiense、Marinobacterium stanierii 及 Marinobacterium jannaschii 之 ONC 為 0.6～2.9% (Munn, 2004)。

2.6 生物性阻塞性之控制

海水淡化 RO 膜之抗菌策略一般著重於進流水之前處理、現地清洗程序或膜表面改質 (Pontié et al., 2005)，前處理方法包括有氯化、濾芯過濾及超過濾等，以下將逐一介紹。

(1) 氯化與脫氯

(2) 濾芯過濾 (cartridge filter)

濾芯過濾普遍存在於 RO 處理系統中，孔徑通常為 1~5 μm，為進 RO
前最後一道防線，用以去除前處理所殘餘之小粒徑顆粒。

(3) 超過濾(UF)

近年來 UF 逐漸被使用為 RO 前處理技術，其優點可減少前處理系統之設備佔地面積，且節省傳統處理程序所需添加之大量化學藥劑，經 UF 過濾後之水質，其 SDI 值可達小於 1，且 UF 之孔徑多已小於一般生物性顆粒，孔徑亦較微過濾分佈均勻，故以 UF 為前處理，其出水水質較佳，相對地對 RO 單元有較高之保護效果。

國內外海淡廠 RO 系統之傳統預處理程序包含機械過濾及化學藥劑添加，其中機械過濾亦即砂濾、微過濾單元，化學藥劑之添加則包含有消毒劑次氯酸鈉(NaClO)、混凝劑氯化鐵(FeCl₃)、除氯劑亞硫酸鈉(NaHSO₃)及抗垢劑硫酸(H₂SO₄)等(Xu et al., 2007)，此類預處理方式之濾材及藥劑皆導致處理成本增加。而國內目前海淡廠除烏崁海淡廠正重新規劃整建，改變前處理方式外，其餘海淡廠皆使用砂濾及微過濾作為前處理，未添加任何藥劑，前處理的不足，導致 RO 系統嚴重的阻塞問題，而整建中的烏崁海淡廠乃以 UF 為 RO 前處理，此方式乃國內外現階段最具發展潛力的 RO 前處理方法之一，其可增加 RO 的使用壽命，降低膜的汰換率(Teng et al., 2003)，並較傳統之預處理提供 RO 系統更穩定的水質；此外 Brehant et al. (2002) 指出傳統預處理程序無法將 SDI 值降至低於 2.5，而 UF 預處理可將 SDI 值降至 1 以下。對於生物性阻塞，UF 預處理亦可以有效去除微生物，降低 RO 膜的生物性阻塞(Murrer & Rosberg, 1998)，以 UF 為前處理之 RO 系統 RO 膜清洗頻率可從 4~12 次/年降至 1~2 次/年。

Xu et al. (2007) 指出以 UF 為前處理可以省略一般進 RO 前之微過濾或袋濾程序，常用於海淡廠 RO 系統預處理之 UF 薄膜廠商包含有『Aquasource』、『X-flow』及『ZeeWeed』等，大部分所使用之 UF 形式為
中空纖維(hollow fiber)膜；過濾方式為deadend模式。Xu et al., 2007&2008、
Teng et al., 2003、Brehant et al., 2002、Wolf et al., 2005等研究使用UF膜之
材質包括有聚丙烯腈(polyacrylonitrile, PAN)、聚醚酮(Polyethersulfone,
PES)、聚偏氟乙烯(polyvinylidene difluoride, PVDF)、聚醚酮/聚乙烯吡咯烷
酮(polyvinyl-pyrrollidone, PVP)。膜孔徑則為50~150 kDa，過濾模式包含
inside-out與outside-in，其中inside-out具有較大的產水量但較易阻塞，且
水質較差(Xu et al., 2008)；此外，為了減少UF本身的阻塞問題，UF之前處
理多包含50~200µm之預過濾、砂濾或低劑量氯化鐵混凝，一般UF膜之使
用壽命為5~10年(Wolf et al., 2005)。

Teng et al. (2003)、Teuler et al. (1999)、Brehant et al. (2002)及Glueckstern et al.
(2002)等研究針對UF之反洗，指出較適反洗週期為30~90 min，反洗時常添
加次氯酸鈉進行消毒，使用之自由氯濃度約為5~20 mg/L，然加氯可能導
致pH增加而造成碳酸鹽結垢，此結垢可藉低pH (pH 2)及二天一次之反洗加
以去除，其餘UF阻塞物之去除可藉由每月一次之NaOH及檸檬酸之浸泡與沖
洗加以去除(Glueckstern et al., 2002)。

(4)膜表面TiO₂改質對阻塞之控制

大部分以預處理為導向之抗阻塞方法，皆無法有效控制RO系統中之生
物性阻塞，因此，最直接控制生物性阻塞之方法乃「現地(in situ)」控制，
直接提高RO膜本身之抗菌效果。Kim et al. (2003)以奈米TiO₂於芳香聚聚酰
胺薄膜複合膜(aromatic polyamide thin-film-composite, PA-TFC)上自我聚集
(self-assembled)，進行其對生物性阻塞改善之評估，其可以二種機制達成自
我聚集，其一是TiO₂與-COOH基之二個氧原子鍵結，或與-COOH基及-OH
產生氫鍵。其結果發現，未照UV光之試程中，TiO₂沉積膜較原始膜之E-coli
存活量僅有些許差異(約2000~3000 CFU/mL)，且通量與原始膜差異小，而
具UV光照之試程(4 小時)，則E-coli存活量有明顯之減少(約40,000
CFU/mL)，且通量亦可提升。Kwak et al. (2001)亦應用TiO₂奈米顆粒於PA-TFC，合成用以抗菌之有機-無機複合RO膜。

由於TiO₂改質之RO膜在應用上需配合UV光照射，難以與目前常見之捲式RO膜結合應用，故用於捲式膜表面改質之材料應選擇本身可獨自發揮抗菌效果之材料為考量。

2.7 奈米銀之抗菌

2.7.1 奈米銀之抗菌原理與效果

銀化合物與銀離子自古被認為對微生物生長之抑制能力強並具有殺菌效果，且其抗菌活性持久(Kawashita et al., 2000; Xu et al., 2006; Zhang et al., 2007)。Cho et al. (2005)指出銀離子之抗菌效果乃來自於其進入細胞體內後，將與硫氫基(-SH)酵素反應，導致微生物失去活性。近年來不同含銀抗菌材料逐漸被發展，並被製造成商品(Kawashita et al., 2000)，Chen & Schluesener (2008)更指出各式產品已於市場上販賣，在醫療應用上，銀用以處理傷口、外科機具及義肢，日常生活中，亦有許多含銀產品，如洗衣劑、壁畫、淨水器、水質消毒劑及水管(Cheng et al., 2004; Zhang & Sun, 2007)，Lee et al. (2007)、Vigneshwaran et al. (2007)、Chou et al. (2005)則結合奈米銀顆粒與紡織品，用於製造衣物及襪子。

含有奈米銀之聚合物亦被廣泛發展(Son et al. 2004; Xu et al., 2006; Li et al., 2007; Liu et al., 2001; Clémenson et al., 2006; Chen, 2003)，用於水處理之薄膜，其主要材質亦為聚合物，如醋酸纖維(cellulose acetate, CA)、聚酰胺(polyamide, PA)、聚丙烯腈(polyacrylonitrile, PAN)。於聚合物表面披覆奈比銀顆粒之方法有許多種，如化學氧化還原法，氣相層積法，雷射光照射法及奈米結構樣板等(Luo et al., 2005; Lo et al., 2007; Chen & Schluesener,
2008)，奈米銀顆粒亦可混合於薄膜製作程序，增加其抗生物性阻塞能力（Zodrow et al. 2009）。

2.7.2 含銀材料製備方法

含銀材料之製備，可分為以下幾種形式：

(1) 含矽膠之銀 sol-gel 的製備

Wu et al. (2000) 指出一般含矽膠之銀 sol-gel 的製備方式，乃以高濃度之銀鹽溶液以不同比例混合水解之矽前驅物，其以水解之矽前驅物四甲氧基矽烷 (tetramethoxysilane, TMOS) 進行製備，並添加微量酸作為催化劑，如鹽酸、硝酸、硫酸，銀之來源，則可利用硝酸銀或氯化銀，將該溶液與水解矽膠混合，並置於小玻璃管封口膨化。Li et al. (2003) 則以四乙氧基矽烷 (tetraethyl orthosilicate, TEOS) 混合 99.5% 之乙醇，為 A 溶液，另混合硝酸銀於水、1N 硝酸及乙醇中，為 B 溶液，將 B 溶液緩慢加入 A 溶液中，室溫下伴隨高草莓之磁石攪拌，進行含奈米銀之矽薄膜於玻璃上之披覆。

(2) 化學還原披覆

Jiang et al. (2006) 指出化學還原法十分常見被用於合成奈米銀顆粒，典型的還原劑包括有 polyols (Sun et al., 2002)、四硼酸鈉 (Sun et al., 2004; Muniz-Miranda et al., 2004 & 2006)、聯氨 (Zhang et al., 2007)、甲醛 (Chen, 2003) 及聚合乙二醇 (poly(ethylene glycol), PEG) (Luo et al., 2005) 等。

(3) 輻射接枝法

戴等人 (2004) 採用輻射接枝法幫助銀粒子與紡織材料結合，增加其抗菌效果，所使用之紡織材料為尼龍纖維 (poly(iminocarbonylpentamethylene), Nylon) 及聚乙烯對苯二甲酸酯 (polyethylene terephthalates, PET) 纖維。
為 Co-60，輻射強度 50 萬居里，並探討無機中間體 (載銀二氧化矽奈米粉體) 及有機中間體 (Poly(acrylic acid)，PAA 及 Polyvinyl alcohol，PVA) 對纖維之含銀量之影響，及含銀紡織材料之抗菌效果。
第三章 研究方法及實驗材料

目前對於國內各淡化廠之 RO 薄膜阻塞性質研究仍十分缺乏，因此，本研究分析鑑定實廠 RO 膜之阻塞性質，且鑑於生物性阻塞性質為各國所提出淡化程序中最普通且難以防制之阻塞性質，雖有學者提出生物性阻塞性質之相關機制，但卻未有文獻直接證實；故本研究針對造成生物性阻塞性質之表生物活性進行深入探討，而季節及濃縮液濃縮倍率之影響，亦納入探討範圍。此外，加氧及除氧位置不當及抗垢剤的添加，都可能促進殘存之微生物於膜表面增生，為提出有效之控制方法，本研究以 RO 膜披覆銀粒子方式，目前已銀粒子已被證實具有抑菌效果，故以最直接方式，防止微生物於 RO 膜表增生，應可有效改善生物性阻塞性質問題，且免除各種前處理是否有微生物殘存進入 RO 膜系統之問題。

3.1 研究架構

本研究共可分為三大主題，分別如圖 3.1 所示，首先針對現階段國內海淡廠及鹹井水淡化廠 RO 膜表面阻塞性質之鑑定，包括有白沙淡化廠及烏崁海淡廠一廠之 RO 膜；另本研究著重於海淡廠之生物性阻塞性質而進行以下幾個主題探討，包括有季節及濃縮液之濃縮倍率對生物性阻塞性質之影響及銀沉積 RO 膜對生物性阻塞性質之控制。其中，RO 膜表面阻塞性質之鑑定乃以實廠已不堪使用之 RO 膜進行分析研究，其餘皆以 RO 平板膜組進行試驗，以下將針對研究方法及設備與材料逐一介紹。
海水淡化程序RO膜生物性阻塞之特性及缓减

BWRO膜阻塞特性分析
（白沙淡化厂）
- 有机性阻塞
- 无机性结垢
- 生物性阻塞

RO膜阻塞特性分析
（实厂RO膜）

海淡厂RO膜之生物性阻塞特性探讨
（模型厂试验）

奈米银改质对生物性阻塞之缓减
（模型厂试验）

奈米银于表面之镀覆
- RO膜之奈米银表面镀覆
- spacer之奈米银表面镀覆

奈米银RO膜/spacer之抗生物性阻塞效果
- 微生物之增生/黏附
- RO效能变化

图3.1 研究架构
3.2 研究方法

3.2.1 實廠 RO 膜之阻塞特性分析

本研究之 RO 膜,分別以代表鹹井水淡化廠之白沙淡化廠,及代表海水淡化廠之烏崁海水淡化廠一廠,選取該二廠已阻塞不堪使用之 RO 膜,進行解剖分析。

(1) 淡化廠簡介

白沙淡化廠為二階段之 RO 處理程序,前處理包括砂濾、匣式過濾 (5 µm)及加酸,共有 2 套 RO 膜組,每套系統具 5 根壓力管,每根壓力管填充 6 根捲式 RO 膜 (圖 3.2)。二階段 RO 膜組示意圖如圖 3.3,前三根並聯壓力管為第一階段 RO,濃縮液平均進入後二根並聯壓力管,因此本研究分別採此二階段 RO 膜之各一根進行解剖分析。

烏崁海淡廠一廠之 RO 處理程序則屬於單一階段 RO 膜處理系統,其前處理乃經介質過濾(石英砂-活性碳)、匣式過濾 (5 µm),隨即進入 RO 處理系統,其每根壓力管填充 7 根 RO 膜,填充方式亦類似於圖 3.2,其僅為一階段式 RO 膜組,本研究取一已阻塞不堪使用之實廠 RO 膜進行膜之解剖分析。
圖 3.2 壓力管 RO 膜填充方式

圖 3.3 二階段 RO 膜組示意圖
（2）膜的解剖與阻塞物萃取

針對 RO 膜之解剖鑑定，為探討不同薄膜部位之阻塞程度與型態，原則上所分析之膜部位可分為進水端、出水端、內層(靠近中心清水收集管部位)與外層(靠近玻璃纖維膜殼部位)等方向進行探討。

針對 RO 膜管之解剖，方式及步驟詳述如後。在去除玻璃纖維外殼後，先行攤開檢視外觀特性，隨即切取出一片膜，並於不同部位(本試驗分為 12 部位)取下 1.7 × 1.7 cm² 之膜片(如圖 3.4 所示)，膜片依序以 DI 水、0.1N 硫酸、0.1N 之氫氧化鈉配合超音波震盪 (DELTA DC400)，分別浸泡 5 小時，而後進行每一採樣位置之三種水樣之各項水質分析。

圖 3.4 RO 膜解剖示意圖

（3）萃取液之元素分析

元素之分析包括 Si、Al、Fe、Mn、Mg、Ca、Sr、Ba 等，樣品分析前先經 0.45 μm 濾紙過濾，過濾後以感應耦合電漿質譜儀 (inductively coupled plasma-mass spectrometer, ICP-MS) (Perkin Elmer, SCIEX ELAN 5000) 進行分析。

（4）膜表有機阻塞物含量分析
膜表之有機物定量乃以裁取固定面積之小膜片，於 105℃烘 24 小時，
計算前後重量差，而後以 550℃烘爐灼燒 8 小時，並計算前後重量差，以灼
燒所損失之重量表示有機物之含量。

(5) 萃取液微生物分析

本試驗之微生物定量採 DAPI 染色法，進行總菌數之計量，其乃以含有
Irgalan Black 之黑色濾紙 (0.1 µm, GE Osmonics, Minnetonka, MN, USA) 過
濾後，於暗室中以 100 μL 之 DAPI 染劑(Sigma-Aldrich Co., USA)進行染色，
並於螢光顯微鏡(Nikon, E400)下計數。

(6) 薄膜直接鑑定

薄膜直接鑑定之項目包括場發射電子顯微鏡(field emission gun
scanning electron microscopy, FEG-SEM-EDX)(JEOL, JSM-6330F)及傅立葉
轉換紅外線光譜儀 (Fourier-transform infrared spectro- scopy, FTIR)(Bomem,
DA8.3)等貴重儀器進行膜表之直接掃描分析。

3.2.2 海淡廠 RO 膜之生物性阻塞特性探討

(1) 季節對生物性阻塞之影響

隨著季節之變化，水環境之物化性質亦隨之有些微改變，因此生存於
水體之微生物必然受到影響，為瞭解海淡廠 RO 膜之生物性阻塞隨季節之變
化情形，本研究探討夏季與冬季二極端季節所造成 RO 膜阻塞特性的差
異，並瞭解其對 RO 系統所造成之影響，故分別於 96 年 1~2 月及 6~7
月間進行平板式 RO 膜試驗。

本研究引用實廠砂濾後水進行試驗，系統定時記錄通量及壓力，並手
動分析原水、濃縮液及滲透液之水質，於試驗期間，並於起始第 2 天便進
行膜表微生物染色計數，隨後每 3～4 天進行一次染色計數，最後於試驗終了利用表面分析儀器進行 RO 膜表面累積之阻塞物特性分析。

(2)濃縮液之濃縮倍率對生物性阻塞之影響

有鑑於鹽度對微生物具影響力，RO 壓力套管中，隨著膜位置不同，膜表累積之微生物便因 RO 之濃縮效果而受到影響，根據實廠的 RO 進流與濃鹽水之總溶解固體物(total dissolved solids, TDS)濃度約分別為 38,000 mg/L 及 50,000 mg/L。本研究利用實廠砂濾後水與 RO 濃鹽水以固定比例，配製三種不同 TDS 濃度之進流水，其 TDS 範圍分別為 38,000 ～40,000 mg/L、41,000 ～44,000 mg/L 及 46,000 ～50,000 mg/L，分別模擬實廠 RO 膜壓力套管中不同位置 (前段、中段、末段) 的 RO 膜，並探討各種 TDS 濃度下，其生物性阻塞之差異。

每一試驗分別進行約 17 天，試驗進行中，系統定時記錄通量及壓力，並手動分析原水、濃縮液及滲透液之水質，於起始第 2 天便進行膜表微生物染色計數，隨後每 3～4 天進行一次染色計數，最後於試驗終了利用表面分析儀器進行 RO 膜表面累積之阻塞物特性分析。

3.2.3 奈米銀改質對生物性阻塞之預防

生物性阻塞雖被廣泛認定為海淡廠最嚴重之阻塞問題，至今卻仍無十分有效可行之解決方案，然隨著奈米科技之發展，奈米銀被研究顯示可有效抑菌，因此，本研究利用 RO 膜及 spacer 進行表面銀粒之披覆，而後分別進行試驗，評估其對生物性阻塞之抑制效果。

(1)奈米銀於表面之披覆

為利於在澎湖實廠(烏崁海淡廠)現地進行 RO 膜及 spacer 之表面奈米銀
顆粒之披覆，本研究選用 Chen (2003) 之研究中採用之較簡便奈米銀顆粒還原法，其中所需之藥品包
括有硝酸銀(silver nitrate, AgNO₃)、氨水(ammonia water, NH₄OH)、乙醇(ethanol, C₂H₅OH)及甲醛(formaldehyde, CH₂O)，所有
相關之反應式列於表 3.1。可配製成為二種主要反應溶液，即硝酸銀溶液及
甲醛還原溶液，0.02 M 之硝酸銀(Sigma-Aldrich Co., USA)溶液中添加 10 %
體積百分比之 NH₄OH (Merck Chemicals Ltd., USA)，而 0.4 M 甲醛(J.T.Baker
Inc., USA)還原溶液則利用 95 % 乙醇(Merck_Chemicals Ltd.)添加 1.7% 體積
百分比之 DI水進行配製。

表 3.1 奈米銀顆粒還原之相關反應式

<table>
<thead>
<tr>
<th>反應式</th>
<th>描述</th>
</tr>
</thead>
<tbody>
<tr>
<td>2AgNO₃ + 2NH₄OH → Ag₂O + 2NH₄NO₃ + H₂O</td>
<td>硝酸銀與氨水反應生成氧化銀及硝酸胺和水</td>
</tr>
<tr>
<td>Ag₂O + 4NH₂OH → 2Ag(NH₃)₂OH + 3H₂O</td>
<td>氧化銀與氨水反應生成氧化絡合物及水</td>
</tr>
<tr>
<td>Ag(NH₃)₂OH + NH₄NO₃ → Ag(NH₃)₂NO₃ + NH₄OH</td>
<td>氨水與硝酸銨生成絡合物及氨水</td>
</tr>
<tr>
<td>2Ag(NH₃)₂OH + HCHO → 2Ag + 4NH₃ + HCOOH + H₂O</td>
<td>氨絡合物與甲醛反應生成氧化銅及絡合物及甲醛及水</td>
</tr>
</tbody>
</table>

預備進行奈米銀披覆之 RO 膜及 spacer 乃裁取自捲式 RO 膜(SW30-2514, FILMTEC-DOW)，該捲式 RO 膜乃提供本研究全部試驗之 RO 膜，RO 膜及
spacer 經裁切使大小適於平板試驗模組(14×19 cm²)，該 RO 膜及 spacer 分別被
浸泡至硝酸銀溶液中 30 分鐘，使表面吸附銀離子；而後取出，再度分別浸泡至
甲醛還原溶液，並輕微水平搖晃盛裝溶液之容器，使均勻反應，而後
膜與 spacer 皆自溶液中取出，並以洗瓶之 DI 水沖洗，以移除残留之反應溶液及
未緊密吸附之顆粒，隨後便作為奈米銀抗菌試驗之用。

(2) 奈米銀 RO 膜之抗生物性阻塞效果

本試驗包含(1)未披覆奈米銀之 RO 膜及 spacer 組合，稱為 Un-MS 試
驗，亦即空白對照組，(2) 披覆奈米銀之 RO 膜搭配未披覆奈米銀之 spacer，
稱為 Ag-cM 試驗，(3)未披覆奈米銀之 RO 膜搭配披覆奈米銀之 spacer，稱為 Ag-cS 試驗。

將各試驗之 RO 膜及 spacer 置於平板膜組中，分別進行試驗，並定時記錄通量與壓力、分析進流水、滲透液及濃縮液之水質特性，此外於濾程進行中，於起始第 2 天便進行膜表微生物染色計數，隨後每 3 ~ 4 天進行一次染色計數，最後於試驗終了利用表面分析儀器進行 RO 膜表面累積之阻塞物特性分析。

3.3 研究設備及分析方法

3.3.1 平板式 RO 膜試驗模型廠

圖 3.5 為本研究用以試驗之RO平板膜組 (Sepa™ CF II crossflow test cell, GE Osmonics, USA)，照片則如圖 3.6，此套系統乃架設於烏崁海淡廠一廠，並以實廠砂濾後水作為進流水，經 5 µm 濾芯過濾後，以 2 L/min 之進流速度進入 RO 平板膜組，並以天秤連續記錄滲流水之累積重量，以作為產水量之計算。所使用之 RO 膜為 Filmtec SW30－2514 (DOW-FILMTEC, USA) 自行裁切為平板膜組之大小，捲式 SW30－2514 膜之有效面積為 0.6 m²，在建議操作壓力 55 bar (800 psi) 下，25℃下理論產水量為 0.6 m³/d，故該溫度下之理想通量約為 1 m³/m²-day。
Influent adopted from cross-media sand filters in full-scale desalination plant

Ft: feed water tank; Rft: RO feed tank; Ct: concentrate tank; Pt: permeate tank; Cf: cartridge filter; pp: pump; Hpp: high-pressure pump; P: pressure meter; F: flowrate meter; S: scale
圖 3.6 RO 平板試驗模型
3.3.2 水質及膜阻塞物分析方法

(1) 總溶解固體物(TDS)、溫度及 pH 分析

總溶解固體物之分析乃利用TDS分析儀Ultrameter II™ (MYRON L Co., USA)進行分析，各模型廠試驗之分析頻率為 4 次/日；溫度則以一般電子式溫度分別於各桶槽進行量測，頻率為 4 次/日；pH 值以 pH 計進行分析，頻率為 4 次/日。

(2) 元素分析

元素之分析包括 Si、Al、Fe、Mn、Mg、Ca、Sr、Ba 等，樣品分析前先經 0.45 μm 濾紙過濾，過濾後以感應耦合電漿質譜儀(inductively coupled plasma-mass spectrometer, ICP-MS) (Perkin Elmer, SCIEX ELAN 5000)進行分析。

(3) 總菌數定量

本試驗之微生物定量採 DAPI 染色法，進行總菌數之計量，其乃以含有Irgalan Black之黑色濾紙 (0.1 μm, GE Osmonics, Minnetonka, MN, USA) 過濾後，於暗室中以 100 μL 之 DAPI 染劑(Sigma-Aldrich Co., USA)進行染色，並於螢光顯微鏡(Nikon, E400)下計數。

(4) 表面儀器分析

為能直接觀察薄膜表面之影像及更進一步確認表面積垢之成分，因此利用 FE-SEM (JEOL, JSM-6330F)及 FTIR(Bomem, DA8.3)等貴重儀器進行膜表之直接掃描分析。

3.3.3 微生物之黏附與生長定量

為進行長時間之微生物成長觀察，並分辨微生物之黏附與增生量，長效染劑 PKH-26 (Red Fluorescent Cell Linker Mini kit, Sigma-Alorich) 乃被用

本研究參考上述醫學研究的長效染劑方法，衍生建立可用於本研究中 RO 膜表面微生物之計數程序，用以分辨黏附及增生之微生物，如圖 3.8 所示。在試驗起始之第 2 天，RO 膜便自膜組上移除，並以 PKH-26 染色後計數，為減少計數位置所造成之差異，膜表面更被區分為 9 個區域 (3×3 陣列)，每一區域另選擇 9 個點進行計數(亦是 3×3 陣列)，此 81 個位置之微生物計

圖 3.7 RO 膜表面 PKH-26 染色之微生物紅色螢光顯微照片
數量平均值表示了該操作時間下之膜表總累積微生物量，此時第一次所計
數之微生物量定義為「Count A」。而後將 RO 膜置回平板膜組，持續該試
驗期程，3～4 天後，該 RO 膜再度自膜組上取下，並直接計數，此時微生
物量定義為「Count B」；而後進行 PKH-26 染色，再次計數，此時微生物
量定義為「Count C」。隨後 RO 膜依然置回平板試驗模組，持續試驗，往
後每 3～4 日皆重複新的「Count B」與「Count C」之計數，直到試驗結束。

其中 Count A 即表示試驗開始後，率先黏附至膜表的微生物量，而根
據已被染色之細胞，其分裂增生之子細胞亦带有螢光，Count B 可表示 Count
A 經三至四日後，已增生至 Count B，故以二者間之差作為微生物於此期間
之增生量，亦即

增生量=「Count B」-「Count A」

此外，「Count C」為新染色後所得之微生物量，「Count C」與「Count
B」之差異，即本次剛被染色之微生物量，則可表示新黏附之微生物量，亦
即

新黏附量=「Count C」-「Count B」

待下一個循環，則「Count C」成為最末次之微生物量，可視為新的「Count
A」值，持續「Count B」-「Count A」、「Count C」-「Count B」之循環計
算。

藉由圖 3.9 可以見得，經 PKH-26 染色，原存在之生物顆粒及增生之生
物顆粒皆帶有紅色螢光，新黏附之微生物則需待下次染色後方能被歸入計
數之微生物量。
Test run start

after 2 days

Membrane removed from module

after 3 to 4 days

Membrane removed from module

Taking the residual microbal counting as 'Count B'

Staining by PKH-26 and taking the first microbal counting as 'Count A'

Put membrane back to testing cell and keep running

Staining by PKH-26 again and taking the new microbal counting as 'Count C'

Note:
1st cycle
multiplied cells = B – A
newly adhered cells from feed water = C – B
2nd cycle to the end
multiplied cells = B – A’
newly adhered cells from feed water = C – B

set value A’ to be equal to C

Note: 3.8 微生物計數程序
3.3.4 微生物菌相分析

針對膜表累積微生物之菌相分析，本研究自試驗終了之 RO 膜片裁取適當大小之 RO 膜，剪成碎片，置入 1.5 mL 微量離心管中，加入八分滿之滅菌水，並利用超音波震盪 20 分鐘，將膜表微生物細胞轉移至水相中，並於移除微量離心管中之 RO 膜碎片後貯存，做為進行後續 DNA 萃取、聚合酶連鎖反應 (PCR) 及變性梯度凝膠電泳 (DGGE) 分析。

(1) DNA 萃取

DNA 萃取前以針頭抽放方式打散生物量，並以 1X 之 PBS 清洗兩次後利用 MO-BIO 之 DNA 萃取套組 (MoBio, PowerSoilTM DNA Kit) 進行 DNA 萃取，萃取步驟依產品建議之標準步驟進行。

(2) 聚合酶連鎖反應 (PCR)

本研究於 PCR 增幅反應使用引子為 357F (5'-CCT ACG GGA GGC AGC AG-3') 加上 GC clamp (5'-CGC CCG CCG CGC GCG GCG GGC GGG GCG GGG GCA CG G GGG G-3') 及 907R (5'-CCG TCA ATT CAT TTG AGT TT-3') (Sanchez et al., 2007)，PCR 反應條件如圖 3.9 所示。

![圖 3.9 PCR 反應條件](image)

37
(3) 變性梯度凝膠電泳(DGGE)

前述所得之 PCR 產物隨後便利用變性梯度凝膠電泳進行 DNA 片段序列分離，所使用之系統為 Bio-Rad 之 D-Code universal mutation detection system，所配置變性梯度膠之配製相關藥劑如表 3.2，電泳條件為 200V、5 小時，取膠後以溴化乙錠(ethidium bromide, EtBr)染色，並以 Vilber Lourmat 照膠系統(E-BOX-1000)進行顯像。成功顯像後，便切取部份 DNA 片斷序列，並進行序列回收，作為後續定序之用。

表 3.2 變性梯度膠之配製藥劑

<table>
<thead>
<tr>
<th>Denature solution(%)</th>
<th>20</th>
<th>30</th>
<th>60</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>40% Acrylamide/Bis(mL)</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>50× TAE Buffer (mL)</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Formamide (mL)</td>
<td>1.6</td>
<td>2.4</td>
<td>4.8</td>
<td>6.4</td>
</tr>
<tr>
<td>Urea (g)</td>
<td>1.64</td>
<td>2.46</td>
<td>4.92</td>
<td>6.56</td>
</tr>
<tr>
<td>H$_2$O (mL)$^{[1]}$</td>
<td>to 20</td>
<td>to 20</td>
<td>to 20</td>
<td>to 20</td>
</tr>
<tr>
<td>10% APS(mL)</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>TEMED (mL)</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
</tbody>
</table>

$^{[1]}$ Add H$_2$O to attach a total volum of 20 mL after adding 40% Acrylamide/Bis, 50× TAE Buffer, Formamide and Urea.
第四章 鹹井水淡化及海水淡化廠 RO 膜之阻塞特性

本研究首先進行鹹井水淡化廠與海水淡化廠 RO 膜之解剖分析，鑑定其膜表阻塞物之種類與特性。

4.1 鹹井水淡化廠之 RO 膜阻塞特性

白沙淡化廠乃屬二階段 RO 薄膜操作模式，並以鹹井水進行淡化，本研究分別採取已阻塞且不堪使用之第一階段及第二階段 RO 膜各一，運送至本實驗室進行解剖分析。除探討造成薄膜阻塞物種之物化及生物特性外，更區分不同薄膜部位，探討其阻塞程度與型態。

(1)外觀檢視

經由外觀檢視，第一階段 RO 膜與第二階段 RO 膜之總重量相較之下，以第一階段 RO 膜輕許多，二捲式膜經解剖攤開後並裁取一片膜，如圖 4.1 所示，可見第一階段 RO 膜表面沉積物呈咖啡色、黏膜狀，RO 膜進水端色深，出水端色淺；第二階段 RO 膜，膜表面沉積物呈黃色，具明顯之結垢狀、質硬，且 RO 進水端色淺，出水端色深。

圖 4.2 為薄膜於 400 倍光學顯微鏡下所呈現之影像，第一階段 RO 膜可見龜裂之阻塞物沉積，第二階段 RO 膜照片則顯示平整之表面沉積，圖 4.3 為 RO 膜 10000 倍之電子顯微照片，可清楚見得第一階段 RO 膜表面累積不規則形狀之阻塞物，並有桿狀微生物分布於上，大小約 1～2 μm，而第二階段 RO 膜表面則可明顯看出特殊結垢物之結晶形態。
圖 4.1 白沙淡化廠 RO 膜攤開照片 (a) 第一階段 RO 膜 (b) 第二階段 RO 膜

圖 4.2 白沙淡化廠 RO 膜 400×顯微照片 (a) 第一階段 RO 膜 (b) 第二階段 RO 膜

圖 4.3 白沙淡化廠 RO 膜 10000×電子顯微照片 (a) 第一階段 RO 膜 (b) 第二階段 RO 膜
(2) 有機性阻塞物之定量

膜表面累積有機阻塞物含量乃以 550°C 可被焚化之阻塞物作為有機質定量之代表，將二階段 RO 膜之分析結果依上下游排列，結果如圖 4.4 所示，圖 4.4 (a) 為第一階段膜，圖 4.4 (b) 為第二段膜之分布情形，顯示有機阻塞物含量愈接近第二階段膜之出水端含量愈高，然第一階段膜之各位置焚化損失重量約佔總阻塞物重之 85 ~ 93%，第二階段膜則僅佔 5 ~ 8%，顯示第一階段膜之阻塞物多為有機質为主要阻塞型態，雖此，第二階段膜之有機物含量可高達 2.5 ~ 4 mg/cm²，普遍較第一階段之 2 ~ 3 mg/cm² 高，且藉由焚化後之灰份可見第一階段膜所殘餘之成分為砂質顆粒，第二階段膜則為片狀硬塊(圖 4.5)，故可推論第一階段膜主要以膠體顆粒及有機物為主要阻塞物，第二階段膜則以無機物質伴隨大量有機物之沉澱，亦可能為二者之共沉澱。
圖 4.4 白沙淡化廠 RO 膜表面累積有機物之總量分布(a)第一階段 RO 膜 (b)第二階段 RO 膜

圖 4.5 白沙淡化廠 RO 膜焚化殘餘灰份(a)第一階段 RO 膜(b)第二階段 RO 膜
(3) 結垢物元素分析

圖 4.6 為泡膜萃取液以 ICP 進行之元素分析結果，所得之元素總量百分比，由(a)中可見第一階段 RO 膜並沒有較特異性之元素沉積，其最大元素含量為 Al 之 1.44 mg/cm²，相較於第二階段膜 (圖 4.6 (b))，少於 Fe 含量之 1.68 mg/cm²，顯示第一階段膜之各種元素含量皆十分微量，然第二階段膜之分析則顯示，Ca 含量特別高，表示膜表面所觀察得之結垢物以 Ca 之化合物為主。

此外，為了建構出實際 RO 膜表面之結垢物總量分布情形，乃將每一分析位置之結垢物總量，以該位置之各元素含量總和表示，繪製出分佈圖如圖 4.7 所示，圖 4.7 (a) 為第一階段膜，圖 4.7 (b) 為第二段膜。該圖顯示第一階段膜每單位面積所累積之結垢物含量很少，最高累積濃度約為 0.5 mg/cm²，而第二階段膜則明顯多許多，累積濃度皆大於 10 mg/cm²，因此，愈接近出水端，此時濃縮液之濃度愈高，導致鈣或其他元素之化合物於膜表面沉澱析出。
圖 4.6 白沙淡化廠 RO 膜表面累積元素所佔比例 (a) 第一階段 RO 膜 (b) 第二階段 RO 膜

圖 4.7 白沙淡化廠 RO 膜表面累積結垢之總量分布 (a) 第一階段 RO 膜 (b) 第二階段 RO 膜
(4) 微生物分析

經由DAPI染色計數，所得結果如圖4.8所示，圖4.8(a)屬第一階段膜，
圖4.8(b)屬第二段膜，由圖可得知，二段膜表面皆有大量微生物存在，特
別是第一階段膜，微生物累積量可達1.5 ~ 3×10^8 cells/cm^2，而第二階段累積
量亦有0.5 ~ 2.5×10^8 cells/cm^2，因此生物性阻塞對鍊井水淡化膜阻塞之影
響，亦為實廠操作改善策略之考量中必須加以重視之課題。

(5) FTIR 分析結果

FTIR之分析結果如圖4.9所示，由圖可知，相較於乾淨之薄膜，第一、
二階段膜圖譜之波峰明顯少許多，此乃因為薄膜本身之訊號已多被表面沉
積物覆蓋，其中第一階段RO膜存在四個特徵波峰，1035 cm^{-1}及916 cm^{-1}為
多醣類之特徵波峰，1631 cm^{-1}及1562 cm^{-1}則為蛋白質之特徵波峰，二者顯
示EPS之存在。第二階段膜之圖譜，其所顯示之波峰極為單純，根據專書
「Infrared spectral interpretation-a systematic approach」中以主要成分為非有
機物之樣品進行分析之結果，比對後本試驗結果與該書之碳酸鈣FTIR圖譜
十分相似，分別於1444 cm^{-1}及874 cm^{-1}二處出現特徵波鋒，其為無機碳酸
根之表徵，加上本試驗所得之主要元素為鈣，故推測第二階段薄膜表面之
結垢物屬碳酸鈣結垢。
圖 4.8 白沙淡化廠 RO 膜表面細菌數之分布 (a) 第一階段 RO 膜 (b) 第二階段 RO 膜

圖 4.9 白沙淡化廠 RO 膜 FTIR 圖譜
4.2 海水淡化廠之 RO 膜阻塞特性

為瞭解海水淡化廠 RO 膜之阻塞特性，本研究自澎湖烏崁海淡廠一廠取一阻塞嚴重且不堪使用之 RO 膜，進行解剖及阻塞物鑑定分析，該廠全段處理程序未添加任何藥劑。圖 4.10 為捲式 RO 膜解剖後攤開之照片，藉由肉眼觀察膜表面阻塞物與鹹井水淡化廠第一階段 RO 膜之阻塞型態較為類似，呈棕色之有機性阻塞型態。

圖 4.11 為利用 ICP 分析萃取液所得之各種無機元素於膜表之累積量，很显然以 Si 之含量遠大於其他元素，其次為鋁、鈣、鎂及鐵，雖然相關研究已發展出 Si 結構潛勢之計算，George (1983)、Butt et al. (1997a)及Graham et al. (1989)等皆指出即使 Si 含量遠低於其結垢潛勢，SiO₂之結垢依然會發生，當鋁、鐵、鈣及鎂存在時，Si 的溶解度將大大地降低，因其將形成難溶之混合矽酸鹽，且 Graham et al. (1989) 說明此類顆粒物質多小於 5 µm，極易通過匣式濾心，進入 RO 系統。
圖 4.10 烏崁海淡廠一廠 RO 膜解剖攤開照片

圖 4.11 烏崁海淡廠一廠 RO 膜表面累積元素總量百分比
本研究裁取RO膜上明顯覆蓋有較厚及較薄之阻塞物之RO膜片，進行FTIR圖譜之分析，結果如圖4.12，其中，比較空白膜及具較厚及較薄阻塞物之圖譜可發現，若是膜本身的波峰，則空白膜之訊號高於積垢較薄膜，又高於積垢較厚膜，而若是代表阻塞物之特徵波峰，則積垢越厚的膜，其特徵波鋒愈高，在波峰1085.7 cm⁻¹、802.2 cm⁻¹及663 cm⁻¹等位置為矽化合物相關之特徵波峰，而位於1035 cm⁻¹及916 cm⁻¹之特徵波峰則為多醣類(polysaccharides)之特徵波峰，然不同於白沙淡化廠之分析結果，1562 cm⁻¹與1631 cm⁻¹處代表蛋白質之特徵波峰並不明顯，事實上，Flemming與Wingender (2001)指出多醣類為海水環境中佔較大量之大分子化合物，約占胞外聚合物(EPS)之40 ~ 95%，可知SWRO膜表面EPS以多醣類為主。

膜表微生物量分布如圖4.13所示，微生物普遍且大量分布於整片RO膜，細胞量約1.5 ~ 7.2×10⁸ cells/cm²，顯然較鹹井水RO膜表所累積之微生物量多，圖4.14為海淡廠RO膜表面之電子顯微鏡圖，可發現0.5 ~ 1 μm之微生物存在。
圖 4.12 烏崁海淡廠一廠 RO 膜 FTIR 分析圖譜
圖 4.13 鳥崁海淡廠一廠 RO 膜表面之總菌數分布

圖 4.14 鳥崁海淡廠一廠 RO 膜 10000×電子顯微影像
4.3 小結

鹹井水淡化廠與海水淡化廠之RO膜阻塞特性不同，鹹井水淡化廠之RO序列前端RO膜以膠體/顆粒性、有機性及生物性阻塞為主，後段則以碳酸鈣結垢伴隨有機物與細菌之沉澱，海水淡化廠RO膜則以膠體/顆粒性、有機性及生物性阻塞為主，與BWRO序列前端膜阻塞特性較為相似，

雖此，前段BWRO膜與SWRO膜表面所累積之無機元素含量以BWRO較高，並以Al、Si、Sr、Ba為主，其含量皆較SWRO主要無機結垢物Si高，

此外不同於BWRO，SWRO膜表累積之EPS成分以多醣類為主。
第五章 海淡廠 RO 膜之生物性阻塞特性探討

5.1 原水水質特性

本模型廠之進流水乃取自烏崁海淡廠一廠之砂濾後水，於 2007 年冬季及夏季試驗期間，分別進行數次自實廠砂濾後水之水質分析，如表 5.1 所示，發現二季節之進流水質相似，唯夏季平均水溫較冬季高約 7.6 ℃，夏季之微生物計數量亦略高於冬季。利用該水質分析數據，以 Al-Shammari et al. (2005) 所建議之經驗式進行 CaCO_3、CaSO_4、SrSO_4、BaSO_4 及 SiO_2 之結垢潛勢的計算，結果如同一表格中所示，其中表 5.2 (b) 為以實場冬夏季 RO 系統之濃縮倍率亦即濃縮因子 (CF) 1.25 與 1.43 所計算，而表 5.2 (c) 則以本研究模型廠之平板 RO 膜濃縮倍率進行計算。

實廠所得之冬季與夏季之 S&DSI 值分別為 0.11 與 0.19，皆表示具有 CaCO_3 之結垢潛勢，且夏季較冬季高，其餘 CaSO_4、SrSO_4、BaSO_4 及 SiO_2 之結垢指標則顯示均無結垢潛勢。另以本研究之模型廠之 RO 膜轉化率/回收率 (Y) 進行結垢潛勢的計算，冬季與夏季 RO 膜之轉化率分別為 0.0023 及 0.0034，亦即濃縮因子 (CF) 為 1.0023 及 1.0034，計算結果如表 5.2 (c) 所示，其亦顯示具有 CaCO_3 之結垢潛勢，唯因膜面積小，濃縮係數亦較小，因而較實廠低，其餘結垢指標未顯示具有結垢潛勢。

然而，相較於前章節海淡廠實廠 RO 膜之阻塞特性分析結果，顯示膜表面具有大量 Si 元素累積，與本節所得之結垢潛勢有出入，此應與水體中存在之其餘金屬離子及膜表面其餘阻塞物有關，此將於後續章節做進一步探討。
(a) Water quality of SWRO plant sand filter effluent

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Unit</th>
<th>Winter</th>
<th>Summer</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td></td>
<td>8.2 ± 0.1</td>
<td>8.2 ± 0.1</td>
<td>[1]</td>
</tr>
<tr>
<td>Temp.</td>
<td>°C</td>
<td>23.7 ± 2.4</td>
<td>31.3 ± 0.9</td>
<td>[1]</td>
</tr>
<tr>
<td>TDS</td>
<td>mg/L</td>
<td>39261 ± 896</td>
<td>38618 ± 889</td>
<td>[1]</td>
</tr>
<tr>
<td>Alkalinity (HCO$_3^-$)</td>
<td>mg/L as CaCO$_3$</td>
<td>147.0 ± 4.42</td>
<td>153.0 ± 1.44</td>
<td>[2]</td>
</tr>
<tr>
<td>Anions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO$_4^{2-}$</td>
<td>mg/L</td>
<td>2818.6 ± 416.6</td>
<td>2599.0 ± 469.7</td>
<td>[2]</td>
</tr>
<tr>
<td>Cl$^-$</td>
<td>mg/L</td>
<td>20589 ± 817</td>
<td>20558 ± 354</td>
<td>[1]</td>
</tr>
<tr>
<td>Br$^-$</td>
<td>mg/L</td>
<td>60.2 ± 12.5</td>
<td>58.2 ± 13.4</td>
<td>[2]</td>
</tr>
<tr>
<td>I$^-$</td>
<td>mg/L</td>
<td>0.060 ± 0.004</td>
<td>0.066 ± 0.008</td>
<td>[2]</td>
</tr>
<tr>
<td>Cations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na$^+$</td>
<td>mg/L</td>
<td>11653 ± 174</td>
<td>11168 ± 244</td>
<td>[2]</td>
</tr>
<tr>
<td>K$^+$</td>
<td>mg/L</td>
<td>352.0 ± 40.9</td>
<td>355.0 ± 33.1</td>
<td>[2]</td>
</tr>
<tr>
<td>Ca$^{2+}$</td>
<td>mg/L</td>
<td>434.4 ± 6.9</td>
<td>439.0 ± 3.8</td>
<td>[2]</td>
</tr>
<tr>
<td>Mg$^{2+}$</td>
<td>mg/L</td>
<td>1207.0 ± 176.4</td>
<td>1282.5 ± 179.4</td>
<td>[2]</td>
</tr>
<tr>
<td>Sr$^{2+}$</td>
<td>mg/L</td>
<td>9.44 ± 0.60</td>
<td>9.32 ± 0.61</td>
<td>[2]</td>
</tr>
<tr>
<td>Ba$^{2+}$</td>
<td>mg/L</td>
<td>0.012 ± 0.003</td>
<td>0.013 ± 0.002</td>
<td>[2]</td>
</tr>
<tr>
<td>Fe$^{2+}$</td>
<td>mg/L</td>
<td>4.04 ± 1.68</td>
<td>3.90 ± 1.78</td>
<td>[2]</td>
</tr>
<tr>
<td>Al$^{3+}$</td>
<td>mg/L</td>
<td>0.054 ± 0.030</td>
<td>0.054 ± 0.025</td>
<td>[2]</td>
</tr>
<tr>
<td>SiO$_2$</td>
<td>mg/L</td>
<td>1.255 ± 0.73</td>
<td>1.997 ± 0.6</td>
<td>[2]</td>
</tr>
<tr>
<td>Microorganism</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDC</td>
<td>10^6cells/ml</td>
<td>1.37 ± 0.17</td>
<td>1.68 ± 0.21</td>
<td>[3]</td>
</tr>
</tbody>
</table>

(b) Scaling index calculated for SWRO plant

<table>
<thead>
<tr>
<th>Scaling index [6]</th>
<th>Scaling occur range</th>
<th>Calculated value</th>
<th>Scaling potential</th>
<th>Calculated value</th>
<th>Scaling potential</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>S&DSI</td>
<td>>0</td>
<td>0.11</td>
<td>Scaling</td>
<td>0.19</td>
<td>Scaling</td>
<td>[7]</td>
</tr>
<tr>
<td>SI(CaSO$_4$)</td>
<td>>1</td>
<td>0.26</td>
<td>No Scaling</td>
<td>0.25</td>
<td>No Scaling</td>
<td>[7]</td>
</tr>
<tr>
<td>SI(SrSO$_4$)</td>
<td>>1</td>
<td>0.41</td>
<td>No Scaling</td>
<td>0.39</td>
<td>No Scaling</td>
<td>[7]</td>
</tr>
<tr>
<td>SI(BaSO$_4$)</td>
<td>>1</td>
<td>0.48</td>
<td>No Scaling</td>
<td>0.49</td>
<td>No Scaling</td>
<td>[7]</td>
</tr>
<tr>
<td>SI(SiO$_2$)</td>
<td>>1</td>
<td>0.01</td>
<td>No Scaling</td>
<td>0.02</td>
<td>No Scaling</td>
<td>[7]</td>
</tr>
</tbody>
</table>

(c) Scaling index calculated for flat-sheet RO membrane pilot

<table>
<thead>
<tr>
<th>Scaling index</th>
<th>Scaling occur range</th>
<th>Calculated SI</th>
<th>Scaling potential</th>
<th>Calculated SI</th>
<th>Scaling potential</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>S&DSI</td>
<td>>0</td>
<td>0.04</td>
<td>Scaling</td>
<td>0.07</td>
<td>Scaling</td>
<td>[7]</td>
</tr>
<tr>
<td>SI(CaSO$_4$)</td>
<td>>1</td>
<td>0.24</td>
<td>No Scaling</td>
<td>0.22</td>
<td>No Scaling</td>
<td>[7]</td>
</tr>
<tr>
<td>SI(SrSO$_4$)</td>
<td>>1</td>
<td>0.38</td>
<td>No Scaling</td>
<td>0.35</td>
<td>No Scaling</td>
<td>[7]</td>
</tr>
<tr>
<td>SI(BaSO$_4$)</td>
<td>>1</td>
<td>0.46</td>
<td>No Scaling</td>
<td>0.47</td>
<td>No Scaling</td>
<td>[7]</td>
</tr>
<tr>
<td>SI(SiO$_2$)</td>
<td>>1</td>
<td>0.01</td>
<td>No Scaling</td>
<td>0.01</td>
<td>No Scaling</td>
<td>[7]</td>
</tr>
</tbody>
</table>

[1] temperature analysis frequency: 4 times a day (every 6 hr).
[2] water quality analysis frequency: 5 times during winter test and 4 times during winter test.
[3] Total direct count was identified by DAPI stain and performed 3 times individually in the test periods of winter and summer.
[4] Anions were determined using an Ion Chromatograph (IC).
[5] Cations were determined by ICP spectrometer (quantitative analysis mode for Ca and Mg analysis and semi-quantitative analysis mode for other cations).
[6] The scaling indexes are calculated on the basis of concentration factor (CF) equal to 1.25 in winter (conversion rate, Y, to be 0.2) and 1.43 in summer (conversion rate, Y, to be 0.3).
[7] The scaling indexes are calculated according to the Al-Shammari et al., 2005.
5.2 季節對生物性阻塞之影響

本研究分別於 96 年 1 ~ 2 月間(冬季)及 6 ~ 7 月間(夏季)進行平板式 RO 膜試驗，探討季節對生物性阻塞之影響。

5.2.1 季節性之 RO 膜效能變化

圖 5.1 為兩試驗期間所記錄之 RO 滲出液通量變化，由於產水通量受溫度之影響大，溫度愈高，產水量愈大，根據薄膜廠商所提供之溫度校正因子(Temperature Correction Factor, TCF)，及本系統 RO 進流水之平均溫度冬季 24℃，夏季 31℃，分別查得其 TCF 值為 1.035 及 0.8661，又本研究所使用 RO 塔 25℃之理想通量為 1 m³/m²-day，則冬季理想通量應約為 0.97 m³/m²-day，夏季為 1.15 m³/m²-day，由圖中可發現冬季之操作通量於試驗期間皆維持於 0.6 ~ 0.9 m³/m²-day，略小於理想通量，然夏季之產水通量，可分為三階段，第 I 階段之產水通量維持於 1 ~ 1.2 m³/m²-day，約與理想通量相等，並維持 2 天，第 II 階段，即第 3 ~ 7 天，則通量急劇減少，每日約減少 0.1 m³/m²-day，至第 III 階段則通量減少速率較為趨緩，推測冬季與夏季之產水通量衰減差異應與膜表之微生物生長有關。

此外膜組之脫鹽率可以 TDS 去除率表示如圖 5.2，結果與通量類似，冬季一般可維持於較佳之出水品質，除因薄膜拆卸進行微生物染色計數，重新裝置初期所造成之水質較差外，其餘皆維持於 95% 以上，夏季所表現之水質亦可分為三階段，第 I 階段如同冬季之產水水質，去除率可維持於 95% 以上，則第 II 階段隨通量衰減水質顯著變差，其去除率至降至約 50 ~ 60%，第 III 階段之水質惡化則較為趨緩。

根據產水通量及 TDS 去除率之試驗結果顯示冬季與夏季具有明顯之特

1 原廠之 TFC 數據僅提供 10 ~ 29.9℃，故取 29.9℃之 TFC 值為本研究 31℃之估算依據；各溫度下之正確通量 =25℃之理論通量/ TCF。
性差異，可能導因於生物性阻塞之影響，後續將藉由膜表微生物之增長情形，探討其中之關聯性。

圖 5.1 不同季節 RO 膜之通量隨操作時間之變化
圖 5.2 不同季節 TDS 去除率隨操作時間之變化
5.2.2 膜表微生物之增長

試驗期間，視情況以 3 ~ 4 天之時間間隔，將 RO 膜拆下進行染色分析，每次染色包括染色前計數及染色後計數，染色前微生物細胞數量與前次染色之差異乃用以代表繼前次染色後膜表新增生微生物量，染色後與染色前之細胞數量差異，則表示新黏附之微生物總量。

圖 5.3 為隨操作時間之膜表微生物總量變化，冬季微生物之生長較夏季緩慢且總累積細胞數較少，經對數成長期後，冬季與夏季約分別於第 10 天及第 8 天後達一穩定之平衡(plateau phase)，細胞之數量約維持於 3×10^4 及 10^5 cell/cm²。

圖 5.3 不同季節膜表微生物量隨操作時間之變化
圖 5.4 則為冬夏季膜表微生物之總累積、增生及新黏附細胞量,由圖可知，無論是冬季或夏季、對數成長期或高原期，其新進黏附之微生物皆十分少量，整個試驗期乃皆以膜表微生物之增生決定微生物總量之變化，此外，冬季之膜表微生物於第 10 天達最大總量約 4×10^4 cell/cm2，達此量後雖有些微波動，但約可維持於 3×10^4 cell/cm2，夏季則於第 8 天即可達 8×10^4 cell/cm2，並於第 12 天大量繁殖至 2×10^5 cell/cm2，此最大量為冬季最大量之 4 倍，然而，歷經瞬間族群之大量生長，根據生物族群之發展特性，過度繁殖將可能造成生物體之迅速死亡，因瞬間營養鹽之匱乏，面臨環境之巨大變化，微生物將改變自體特性，如縮小菌體以提高營養鹽之吸收，部份微生物亦可能以進入 VBNC 狀態來因應，此狀態除導致菌體不成長增生外，更可能因面臨突如其來的衝擊，細胞體產生帶氧代謝效應而傷害菌體本身(Munn, 2004)，微生物之不成長與受傷，導致第 15 天之細胞數驟降至 8×10^4 cell/cm2，然族群並非因此而消滅，於第 18 天細胞數又回復至 10^5 cell/cm2 左右，此震盪幅度應將逐漸趨緩，而進入族群發展之高原期 (plateau phase)。

比較微生物之生長與 RO 效能之關係，就具有顯著惡化之夏季試驗而言，RO 膜之產水通量及 TDS 去除率之表現約於 3 ~ 12 天急驟變差，而由圖 5.4(b)可見此時亦正逢微生物之對數成長期，因此，大量增生之微生物釋放大量 EPS 可能為導致 RO 效能變差之主要因素。
圖 5.4 不同季節膜表之增生與新黏附微生物量隨操作時間之變化 (a)冬季 (b)夏季
利用冬季及夏季試驗結束後 RO 膜表面萃取下之生物量，藉由分子生物技術、進行膜表累積之菌相鑑定，表 5.2 為菌種鑑定結果，在冬季及夏季 RO 膜表分別分離出 4 株及 9 株菌，分屬於 Bacteroidetes、Proteobacteria、Planctomycetes 門，Flavobacteria、γ-proteobacteria、α-proteobacteria、Planctomycetacia 綱及 Flavobacteriales、Alteromonadales、Rhodobacterales、Oceanospirillales、Planctomycetales 目中。首次被分離地區除 Winogradskyella poriferorum、Silicibacter luscaceraulensis、Halomonas glaciei、planctomycete GMD14H10 來自巴哈馬、冰島、澳洲等區，其餘多分離自日本與韓國周邊海域，相關菌種背景資料詳見附錄 A。整體而言夏季之菌相較冬季異度大，就夏季菌相而言，以 W. poriferorum、S. luscaceraulensis、planctomycete GMD14H10 為優勢菌種，冬季則為 Winogradskyella thalassocola。

冬季之優勢菌 W. thalassocola 與僅於冬季 RO 膜表出現之 Halomonas glaciei，二者所適於成長之溫度分別為 4 ~ 33℃ (21 ~ 23℃ 最佳)及 4 ~ 22℃，而本試驗期間，冬季進水溫度分布於 20 ~ 25℃，便十分適於該二菌種之繁殖，H. glaciei 具有多醣類水解酵素，可將多醣類快速水解，此對海淡 RO 膜表面 EPS 之降解應具有正面幫助。

共同存在冬季及夏季的菌種 Marinobacter aquaeolei, 具有鐵氧化能力，在低鉄濃度環境下，可利用 siderophores 溶解鉄，並促進細胞對鉄的吸收 (Homann et al., 2009)，並生成氧化鉄於膜表面沉積，且此菌種存在於管線亦將導致實廠及模型廠系統中不鏽鋼或鐵材質之腐蝕。

夏季優勢菌種 S. luscaceraulensis 首度乃由 Petursdottir & Kristjansson (1997)分離自冰島一特殊地熱湖泊 (Blue Lagoon)，雖此，此菌種主要生存於海洋環境，值得一提的是，該湖泊為一個富含矽元素的高鹽度 (2.5%) 湖泊，因矽酸鹽於該湖泊快速沉澱析出的特性，僅有少數菌種可適應並存活。
表 5.2 不同季节之膜表菌相变化

<table>
<thead>
<tr>
<th>DGGE</th>
<th>strain</th>
<th>species</th>
<th>Accession</th>
<th>Max ident</th>
<th>Win</th>
<th>Sum</th>
<th>Optimal temp. for growth (℃)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Sediminibacter furfurosus</td>
<td>AB255369.1</td>
<td>88</td>
<td>○</td>
<td></td>
<td>25 ~ 30</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Pseudoalteromonas elyakovii</td>
<td>EU770411.1</td>
<td>99</td>
<td>○</td>
<td></td>
<td>25 ~ 30</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Marinobacter aquaeolei</td>
<td>AF173969.1</td>
<td>97</td>
<td>○</td>
<td>○</td>
<td>13 ~ 50</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>Thalassobius aestuarii</td>
<td>DQ535898.1</td>
<td>86</td>
<td>○</td>
<td></td>
<td>15 ~ 35</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>Winogradskyella poriferorum</td>
<td>AY848823.1</td>
<td>96</td>
<td>○</td>
<td>○</td>
<td>12 ~ 44</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>Silicibacter lacuscaerulensis</td>
<td>DQ915630.1</td>
<td>95</td>
<td>○</td>
<td></td>
<td>22 ~ 50 (optimum 45℃)</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>Winogradskyella thalassocola</td>
<td>AY771720.1</td>
<td>92</td>
<td>○</td>
<td>○</td>
<td>4 ~ 33</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>Muricauda aquimarina</td>
<td>EU440979.1</td>
<td>94</td>
<td>○</td>
<td></td>
<td>30 ~ 37</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>Halomonas glaciei</td>
<td>DQ984277.1</td>
<td>97</td>
<td>○</td>
<td></td>
<td>4 ~ 22</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>Planctomycete GMD14H10</td>
<td>AY162122.1</td>
<td>84</td>
<td>○</td>
<td></td>
<td>--</td>
</tr>
</tbody>
</table>
圖5.5為二試驗之RO膜表FTIR圖譜，其可提供更進一步之討論，其中根據Omoike & Chorover (2004)及Smith (1998)可知1656 ~ 1530 cm⁻¹及1106 ~ 970 cm⁻¹分別為蛋白質及多醣類之特徵波峰，顯示EPS之存在，且皆於夏季波峰較大。Shenga et al. (2008)與Wingender et al. (1999)指出微生物周圍及其所釋之EPS含有大量帶負電荷之官能基，並有很強之吸附眾金屬能力，此可能為導致夏季膜表累積明顯較大量之矽與鈣之原因，此外，矽相關之特徵波峰802 cm⁻¹代表Si-O-Si及760 ~ 670 cm⁻¹代表Si-CH₂訊號於夏季亦較強，其分別代表無機矽與有機矽之存在（Smith, 1998），此亦證明矽與有機物產生共沉，而該有機物亦可能是EPS，因此，本試驗顯示矽與鈣為各種無機元素中，受季節影響較大者，且其可能直接或間接導因於微生物之活動，未來對於脫鹽系統更微觀之研究，可著重於微生物活動與無機性阻塞之關係。
圖 5.5 不同季節下 RO 膜之膜表 FTIR 圖譜
5.2.3 非生物性阻塞物之分析

除生物性阻塞物外，本研究亦分析膜表累積之元素種類，圖 5.6 為冬季及夏季膜上所分析得之各無機元素含量，顯示 Si、Al、Fe、Ca、Mg 為主要的無機性阻塞物，該含量於夏季以 Ca、Si、Fe、Mg、Al 依序遞減，冬季則以 Fe、Si、Ca、Mg、Al 依序遞減，然根據 5.1 節原水水質特性分析及結垢潛勢的計算，本試驗之進流水質雖具有些微之 CaCO₃ 結垢潛勢，而無 SiO₂ 之結垢潛勢，然而卻仍發現大量之矽與鈣沉積，且不同於 Fe、Mg、Al，Ca 與 Si 於膜表面之含量於夏季與冬季有顯著的差異，其含量在夏季皆較冬季高出許多。

針對 Ca 結垢所存在之冬夏季差異，首要因素在於溫度愈高 Ca 溶解度愈低，此外 Ca 离子與生物性阻塞亦具相關性，Flemming & Ridgway (2009) 指出 Ca 离子可與 EPS 中之藻酸 (alginate) 成分產生架橋，並增加 EPS 的穩定度，然依膜表面 FTIR 圖譜可以見得夏季膜表累積 EPS 含量較冬季高出許多，藉由二者之架橋而導致夏季無機阻塞物 Ca 离子含量高於冬季。此架橋現象亦可發生於 Fe²⁺、Fe³⁺ 與 Cu²⁺ 與 EPS 之間，而 EPS 與 Mg²⁺ 則無此特性。

原水中之 Fe 濃度極低，僅約 4 mg/L，然無論冬季或夏季，膜表面皆存在大量 Fe 元素，根據 Cubicciotti & Licina (1990)，即使原水中之鐵濃度極低，仍可能有鐵積垢物生成，其可能來自於鐵氧化菌氧化水體中之二價鐵生成氧化鐵顆粒而累積於膜表，此外，氧化鐵累積於生物膜上層，將形成保護膜。根據前節之膜表菌種分析結果顯示，本系統無論冬季或夏季皆存在與 M. aquaeolei 菌相似度達 97%之菌種，M. aquaeolei 菌具有鐵氧化能力，此應為導致冬夏季膜表 Fe 元素累積之主要因素。

Si 與 Ca 相似，夏季含量遠較冬季為高，然根據本研究所計算之 Si 的結垢指標，二季節並無明顯差異，且皆遠低於其飽和溶解度，文獻 George (1983)、Butt et al. (1997a) 及 Graham et al. (1989) 等皆指出即使矽濃度遠低於其飽和
溶解度，SiO₂ 阻塞仍可能發生，陽離子鋁、鐵、鈣及鎂之存在將與矽產生共沉澱，形成難溶之矽酸鹽，然而針對本研究而言，原水中之Al與Fe濃度較低，所產生之影響較小，然海水中雖有大量Mg離子存在，根據夏季膜表Si含量遠高於冬季，與Ca之特性相符情況下，推測，本研究膜表面所累積之Si，主要應受膜表累積大量Ca元素之影響。亦即夏季較嚴重之生物性阻塞釋放較多量之EPS，並使Ca離子與EPS產生架橋，大量累積於膜表，而Ca離子更進一步與原水中之Si反應生成矽酸鈣，而導致膜表面大量Si元素累積。

然 Si 之季節性變化亦可能與膜表累積菌種 S. lacuscaerulensis 有關，該菌種首度被分離自一富含矽元素的高鹽度湖泊，因矽濃度高，且不斷析出矽酸鹽，導致該環境僅有少數菌種得以生存，S. lacuscaerulensis 即為其一，膜表存在之菌種與 Si 元素之相互關係仍有待更進一步之研究加以確認。
圖 5.6 不同季節下 RO 膜表面累積各種元素含量
5.3 濃縮效應對生物性阻塞之影響

海水淡化廠多屬單一階段 RO 系統，由數根並聯之壓力套管組成，每一壓力套管填充有 6 根串聯之 RO 膜。前段膜所面臨之進流 TDS 與後段不同，故本章節將探討前、中、後段 RO 膜表因 TDS 之變化，而造成生物性阻塞之差異。

5.3.1 壓力套管中濃度變化對 RO 效能之影響

本研究於試驗期間連續監測 RO 產水水質與產水通量，如圖 5.7 與圖 5.8 所示，結果發現，前段 RO 膜 (TDS 為 38,000 ~ 40,000 mg/L, L-TDS) 之產水通量隨著操作時間增加隨即有顯著的降低趨勢，並伴隨著 TDS 去除率的降低，導致產水水質變差。然中段 (TDS 為 41,000 ~ 44,000 mg/L, M-TDS) 與末段 (TDS 為 46,000 ~ 50,000 mg/L, H-TDS) RO 膜之試驗結果則大不相同，中末段之產水通量與 TDS 去除率皆僅有些微降低趨勢。推測前段 RO 膜於操作啟動後短時間內隨即發生膜表阻塞問題，而該阻塞問題應生物性阻塞有關，此將配合後續章節討論。

根據本系統之試驗結果更進一步顯示實廠 RO 系統運轉時，其前、中、末段 RO 膜應普遍處於本試驗系統之 10 天後的操作狀態，其產水通量於前、中、後段分別約為 0.3、0.6、0.4 m³/m²-day，其與該 RO 膜之建議 30°C 下之理論產水通量 1.15 m³/m²-day 明顯有極大差距，說明實廠之操作一般皆無法達 RO 膜廠商所提供之理想產水通量。
圖 5.7 不同進流 TDS 濃度下隨操作時間 RO 膜之產水通量衰減

不同進流 TDS 濃度下隨操作時間之 TDS 去除率變化
5.3.2 壓力套管中濃度變化對 RO 生物性阻塞之影響

微生物於 RO 序列之前、中、後段之累積生長狀況如圖 5.9 所示，於圖 5.9 (a) 中顯示前段 RO 膜表面之微生物族群於試驗開始後隨即累積成長，並以「增生」為主要之族群成長機制。

圖 5.9 (b) 則顯示中段 RO 膜表的微生物族群量之變化，於試驗初期僅顯現些微黏附機制，並無分析得增生之細胞，總累積微生物量亦維持於 10⁴ cell/cm² 以下，推測大部分微生物已受濃縮之濃鹽水影響；直到後期約 10 天以後，除黏附外，尚伴隨些微增生機制，而後微生物族群大量成長，此可能導因於經環境選殖後，得以適應之微生物大量繁殖所致，因此，10 天前可視為微生物族群成長之誘導期，10 天後則為對數成長期，TDS 濃度之影響導致誘導期之延長。

圖 5.9 (c) 則為末段 RO 膜微生物族群變化，可以發現，雖其於試驗初期即迅速累積微生物量，但該族群成長機制乃以「黏附」為主，除試驗初期有些微增生之微生物外，其餘試驗期間，皆未分析得增生之細胞，此時微生物亦如同前述面臨環境之變化，將啟動其因應機制，可能進入 VBNC 之自我保護狀態，而不增生繁殖。而大量黏附之微生物，則不斷伴隨明顯的脫附或死亡。然而微生物之黏附受不同因子所影響，包括營養鹽狀態、細胞表面電荷、細胞表面親疏水性等 (Flemming, 1993)，當 TDS 濃度變高，亦即離子強度提升，微生物膜表面將變成較為疏水，而增加其受水分子排斥而黏附至膜表面的機會。
(a) TDS = 38,000~40,000 mg.L\(^{-1}\)

(b) TDS = 41,000~44,000 mg.L\(^{-1}\)

(c) TDS = 46,000~50,000 mg.L\(^{-1}\)

図 5.9 不同進流 TDS 濃度下膜表面總累積/增生/黏附之微生物量變化
5.3.3 菌種鑑定

萃取三不同進流 TDS 濃度試驗之 RO 膜表面累積之微生物量，進行菌相分析，結果如表 5.3 所示，為瞭解各菌種之適鹽性，表內亦說明目前相關之研究報告所列之各菌種適於生長之 NaCl 濃度，各菌種之資料詳列於附錄 A 中，然適於生長之 NaCl 濃度定義時乃以分離出之純菌，以不同 NaCl 濃度進行培養試驗所得，與本研究微生物於膜表面生長，菌種間存在相互影響不同，將可能導致有所差異。

本階段三試驗共可分離出 9 株菌，分屬於 Bacteroidetes、Proteobacteria、Planctomycetes 門，Flavobacteria、γ-proteobacteria、α-proteobacteria、Planctomycetacia 綱及 Flavobacteriales、Alteromonadales、Rhodobacterales、Oceanospirillales、Planctomycetales 目中。L-TDS (TDS = 38,000 ~ 40,000 mg/L)試驗，即以海水原水作為進流水之試驗，其膜表可分離出 7 株主要的菌種，而 M-TDS (TDS = 41,000 ~ 44,000 mg/L)及 H-TDS (TDS = 46,000 ~ 50,000 mg/L)試驗則分別分離出 4 株及 6 株菌，然就優勢菌種而言，M-TDS 試驗所分離之 4 株菌，以 W. poriferorum、W. thalassocola、H. gomseomensis 較佔優勢，H-TDS 試驗則僅以 W. poriferorum 及 W. thalassocola 二株菌為優勢菌種，顯示，隨著鹽度增加，得以適應高鹽度環境且大量繁殖之菌種逐漸減少。
表 5.3 不同進流 TDS 濃度之膜表菌相變化

<table>
<thead>
<tr>
<th>DGGE</th>
<th>Strain</th>
<th>Species</th>
<th>Accession</th>
<th>Max ident</th>
<th>L-TDS</th>
<th>M-TDS</th>
<th>H-TDS</th>
<th>NaCl conc. for growth (%)</th>
<th>註</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-TDS M-TDS H-TDS</td>
<td>1</td>
<td>Pseudoalteromonas elyakovii</td>
<td>EU770411.1</td>
<td>99</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td>註 2</td>
</tr>
<tr>
<td>2</td>
<td>Marinobacter aquaeolei</td>
<td>AF173969.1</td>
<td>97</td>
<td>●</td>
<td>○</td>
<td></td>
<td></td>
<td>0 ~ 20 (optimum 5)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Winogradskyella poriferorum</td>
<td>AY848823.1</td>
<td>96</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td>1 ~ 4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Silicibacter lacuscaerulensis</td>
<td>DQ915630.1</td>
<td>95</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td>up to 7 % (optimum 3.5 ~ 4)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Winogradskyella thalassocola</td>
<td>AY771720.1</td>
<td>92</td>
<td>○</td>
<td>●</td>
<td>●</td>
<td></td>
<td>1 ~ 8</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Muricauda aquimarina</td>
<td>EU440979.1</td>
<td>94</td>
<td>●</td>
<td>○</td>
<td>○</td>
<td></td>
<td>optimum 2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Halomonas gomseomensis</td>
<td>AM229314.1</td>
<td>97</td>
<td>●</td>
<td></td>
<td>○</td>
<td></td>
<td>1 ~ 20 (optimum 8-12)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>planctomycete GMD14H10</td>
<td>AY162122.1</td>
<td>84</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Arenibacter troitsensis</td>
<td>EU928776.1</td>
<td>91</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td>1 ~ 6</td>
<td></td>
</tr>
</tbody>
</table>

註 1：「●」代表優勢菌種，「○」表示含量少之菌種。

註 2：Sawabe et al. (2000)指出其無法於無鈉環境生長。

註 3：以純菌培養試驗得之較適成長 NaCl 濃度，各菌種試驗之濃度不同，且無優勢菌種問題，故僅供參考。
反觀膜表微生物族群之發展與RO膜之產水通量與TDS去除率可以發現前段RO膜(L-TDS)因膜表微生物以增生為主族群成長機制，而微生物的增生將伴隨其代謝產物，如EPS，於膜表累積，並造成RO膜生物性阻塞的主因。此類胞外聚合物之累積，亦可由圖5.10之膜表FTIR圖譜看出，根據Omoike & Chorover (2004)、Smith (1998)及Yang et al. (2008)等研究，分布於在1656～1530 cm\(^{-1}\)即為蛋白質勝肽鍵C-O、N-H的波峰特徵，而1106～970 cm\(^{-1}\)則表示多醣類的C-O、C-O-C之特徵，而此二類物質皆為EPS的主要成分。前段RO膜的FTIR圖譜於此二位置較未受污染的RO膜(blank)有明顯的波峰出現，因此，可以確定EPS的存在，且前段RO膜之產水通量衰減與產水水質惡化皆與此階段RO膜之微生物增生息息相關。然而末段RO膜(H-TDS)表面微生物雖累積量與前段RO膜表相去不遠，但其以黏附為主的族群成長機制，因此其於圖5.10中的FTIR圖譜於1656～1530 cm\(^{-1}\)處蛋白質的特徵波峰十分微弱，而多醣類亦較前段RO膜的波鋒約僅佔前段之一半，顯示微生物所釋放之EPS量較低，進而使得其對RO膜之產水通量衰減與產水水質之影響未如前段RO膜嚴重。而中段RO膜(M-TDS)之試驗初期與後段RO膜之結果類似，略高於原海水TDS濃度的環境導致大部分微生物無法增生繁殖，然值得注意的是，其於試驗後期，出現增生量而導致總累積微生物量大增，此可能因經環境選殖後，適應之物種如W. poriferorum、W. thalassocola、H. gomseomensis等開始大量增生之緣故，故其FTIR圖譜亦反應出EPS的存在，也因此於微生物開始增生後，產水通量與TDS去除率亦有較顯著之惡化趨勢。

圖5.10中亦可觀察到Si之累積趨勢，矽相關之特徵波峰Si-O-Si與Si(CH\(_2\))等，並未隨著TDS之濃度增加而強度增加，反與EPS之膜表累積量有相同趨勢，再度說明Si與生物性阻塞存在間接之關係。
圖 5.10 不同進流 TDS 濃度之 RO 膜表 FTIR 圖譜
5.4 小結

季節及 RO 系統之濃縮對海水淡化 RO 膜之生物性阻塞具有顯著之影響，夏季之生物性阻塞較冬季嚴重，且微生物代謝所釋放之 EPS 亦較多，並導致較多量之 Ca 與 Si 於膜表累積，此外，鐵氧化菌之存在導致系統不鏽鋼或鐵材質之銹蝕，並產生氧化鐵阻塞 RO 膜，Byrne (2002) 指出該氧化鐵將於生物膜表面形成保護層，使清洗更加困難，建議以還原劑作為 RO 清洗之第一步驟。進流水隨著 RO 膜之濃縮，於 RO 序列末端之 RO 膜，其生物性阻塞較前端 RO 膜輕微，微生物之增生被抑制，Si 阻塞趨勢亦以序列前端 RO 膜較為嚴重，與膜表 EPS 含量趨勢一致，再度證明其與生物性阻塞存在間接關係。
第六章 奈米銀改質對生物性阻塞之預防

6.1 奈米銀披覆 RO 膜及 spacer

6.1.1 奈米銀披覆 RO 膜

為尋求較佳之表面覆銀方法，本研究進行三種相同藥劑而不同反應方式之試驗，如圖 6.1，方法 A 乃將 RO 膜置入硝酸銀溶液後，再倒入甲醛還原溶液；方法 B 則為預先混合硝酸銀溶液及甲醛還原溶液，而後置入 RO 膜；方法 C 則將 RO 膜置入硝酸銀溶液，使膜表面吸附銀離子後，再將膜取出，另置入裝有甲醛還原溶液之容器。此外，欲得知較佳之反應時間，各方法之試驗皆包含反應時間 20、40 及 60 分鐘。

圖 6.2 ~ 圖 6.4 分別為三種方法所得覆銀 RO 膜之電子顯微照片，圖 6.2 中方法 A 反應 20 分鐘，僅發現有少數顆粒狀之銀顆粒，40 分鐘則明顯有大小約 200 nm 之顆粒，反應 60 分鐘則發現所形成之顆粒極不均勻，有大至 1 µm 及小至 100 nm 之顆粒生成。圖 6.3 方法 B 之結果顯示，反應時間 20 分鐘即有分散於膜表四處之銀顆粒形成，相反地反應 40 分鐘卻僅有少數之顆粒形成，至反應 60 分鐘則又有大小及分布不均之顆粒生成，顯示方法 B 之製備極不穩定，此與其藥劑添加方式有關，因預先混合硝酸銀及甲醛還原溶液後，方置入薄膜，導致兩溶液混合時反應便隨即展開，所生成之奈米銀因而無法與後置入之 RO 膜作良好結合，因而導致方法 B 所得之覆銀狀況及不穩定。方法 C 之試驗結果如圖 6.4 所示，其與方法 A 及 B 之結果大不相同，於反應 20 分鐘膜表便有普遍性的銀顆粒形成，40 分鐘則所形成之顆粒更明顯，顆粒大小及分布皆較前二方法均勻，且穩定，其顆粒大小多約為 100 nm 左右，僅包含些許粒徑較大之顆粒，反應 60 min 所得之顆粒雖亦十分均勻，但顆粒大小普遍略比反應 40 min 稍大，因此，本研究之後續之實驗皆以方法 C、反應 40 min 為較佳之表面覆銀程序。
圖 6.1 奈米銀改質 RO 膜程序之建立

Method A

Immerge RO membrane in AgNO₃ solution

Add formaldehyde solution react 20, 40, or 60 min

Take RO membrane out

Clean with plastic wash bottle (drop physical adsorption Ag particle)

dry

product

Method B

Mix AgNO₃ solution and formaldehyde solution

Immerge RO membrane in solution 20, 40, or 60 min

Take RO membrane out

Clean with plastic wash bottle (drop physical adsorption Ag particle)

dry

product

Method C

Immerge RO membrane in AgNO₃ solution 30 min, and take membrane out

Immerge RO membrane in formaldehyde solution 20, 40, or 60 min

Take RO membrane out

Clean with plastic wash bottle (drop physical adsorption Ag particle)

dry

product
圖 6.2 RO 膜以方法 A 改質後之電子顯微照片

方法 A：將膜浸泡於硝酸銀溶液後，加入甲醛還原溶液，進行反應。
圖 6.3 RO 膜以方法 B 改質後之電子顯微照片

方法 B：混合硝酸銀溶液及甲醛還原溶液後，將膜置入溶液中進行反應。
圖 6.4 RO 膜以方法 C 改質後之電子顯微照片

方法 C：將膜浸泡於硝酸銀溶液 30 min 後取出，再度浸泡於甲醛還原溶液，進行反應。
6.1.2 奈米銀披覆 spacer

利用與 RO 膜相同之方式，以方法 A、B 及 C 進行 spacer 之表面覆銀試驗，反應時間 40 分鐘，結果如圖 6.5 所示，方法 A 所得之 spacer 雖顯示有銀之附著，於 30,000×之顯微照片卻顯示無明顯的顆粒。方法 B 之顯微照片顯示如類似於 RO 膜覆銀時之結果，表面覆銀效果極不穩定，並無明顯之附著物，亦即奈米銀無法成功披覆於 spacer 表面。此與前述奈米銀 RO 膜之披覆結果相似，和方法 B 之藥劑添加方式有關，當先行混合硝酸銀及還原溶液，反應隨即開始，此時置入 spacer，未提供 spacer 與銀離子充分接觸之時間，導致多數銀離子僅直接於溶液中還原，未披覆至 spacer 表面。方法 C 則顯然與 RO 膜之覆銀有相同之結果，spacer 表面可見成功地披覆了大小約 100 nm，甚或更小的奈米銀顆粒，故後續研究仍以方法 C 進行 spacer 之表面改質。
方法 A (10000×) 方法 A (30000×)

方法 B (10000×)

方法 C (10000×) 方法 C (30000×)

圖 6.5 spacer 表面改質後之電子顯微照片
6.2 奈米銀改質 RO 膜及 spacer 之抗菌

銀改質用 RO 膜片及 spacer 乃裁取自捲式 RO 膜 (SW30-2514), 分別披覆銀後，提供作為奈米銀改質 RO 膜 (Ag-cM)及奈米銀改質 spacer (Ag-cS) 之抗生物性阻塞試驗，表面披覆 Ag 之 RO 膜及 sapcer 之電子顯微照片如圖 6.6 所示，顯示 RO 膜表有均勻分布之球型奈米銀顆粒，大部分顆粒大小約 100 nm，其中含少部份較大之顆粒。銀改質 spacer 之 SEM 照片顯示銀顆粒亦成功地析出於 spacer 表面，而銀顆粒分布較銀改質 RO 膜均勻。

圖 6.6 表面覆銀之 RO 膜及 spacer 電子顯微照片
6.2.1 奈米銀改質 RO 膜及 spacer 對脫鹽之影響

本試驗取空白 RO 膜及 spacer 為 Un-MS 試驗，表面覆銀之 RO 膜為 Ag-cM 之試驗，表面覆銀之 spacer 為 Ag-cS 之試驗，進行藉由奈米銀改質，對生物性阻塞控制之評估。

三試驗中之產水通量變化如圖 6.7 所示，圖 6.7 (a)即為 Un-MS 試驗之產水通量變化，其顯示產水通量迅速衰減，於第 3 天 ~ 第 7 天從大於 1.0 降至約 0.5 m^3/m^2·day，而後衰減趨緩，最終之產水通量達 0.2 ~ 0.4 m^3/m^2·day，僅約為起始通量之四分之一。

圖 6.7 (b)為銀改質 RO 膜試驗(Ag-cM)之產水通量變化圖，起始產水量為 0.8 m^3/m^2·day，較 Un-MS 之起始產水量低，此乃因為 RO 膜表面披覆 Ag 粒子，增加滲透阻力所導致，前七天產水量維持在 0.8 m^3/m^2·day，之後便緩慢遞減，意味著 Ag-cM 將 RO 膜的通量衰減從第 2 天延遲至第 7 天。產水通量的衰減經由後續實驗驗證乃因微生物開始於膜表面生長，並釋放胞外聚合物覆蓋膜表，導致 Ag 顆粒被覆蓋而不易釋放 Ag^+，因而抗菌效果消失。奈米銀乃依賴銀離子的釋放，進入微生物細胞，與細胞內的硫氫基(-SH)酵素反應，導致細胞失去活性，藉此達到抗菌效果，當膜表面銀粒子被各種阻塞物覆蓋，導致銀離子無法釋放，便失去抗菌能力。為了避免此問題，本研究遂進行奈米銀披覆改質 spacer 研究，圖 6.7 (c)即為銀改質 spacer (Ag-cS) 試驗的產水通量變化，可以發現 Ag-cS 試驗的產水通量普遍高於 Ag-cM 試驗，產水量維持在起始產水量，為三個試驗中產水通量衰減最低者，此外，直到第 13 天衰減才開始，此結果暗示經銀改質後的 spacer 亦對改善 RO 膜的效能有貢獻，延長所需的清洗周期。

TDS 去除率變化如圖 6.8 所示，未經表面改質膜(Un-MS)的試驗其 TDS 於操作 4 日前去除率維持於 95%以上，而後便迅速下降，於 7 ~ 11 天去除率約為 70 ~ 83%，13 ~ 18 天則平均為 50%，相反地，Ag-cM 試驗的 TDS
去除率普遍維持於 95 % 以上，而 Ag-cS 試驗，TDS 去除率曲線則顯示些微浮動，去除率維持於 97% 與 80 %之間。

其中 Un-MS 試驗之去除率降低乃因為膜表阻塞物不斷累積，產水通量降低，而透過膜之離子不變，導致產水 TDS 濃度變高，而 Ag-cM 試驗雖其通量於 7 天後有明顯衰減，其 TDS 去除率卻無明顯下降趨勢，此乃因膜表面覆銀後，呈現較為疏水，水中離子較 Un-MS 試驗不易通過 RO 膜，使得 TDS 去除率維持不變，Ag-cS 試驗則因膜表未被改質，膜表特性與 Un-MS 無顯著差異，惟其因 spacer 具有抗生物阻塞效果，使得其通量衰減十分緩慢，而不穩定的 TDS 去除率則與其膜表微生物累積之特性有關，後節將可見 Ag-cS 試驗中，膜表面微生物之族群發展特徵為微生物附著後隨即死亡或流失，因此膜表特性不斷改變，導致產水通量亦較不穩定，但水質皆維持於一定水準。

根據圖 6.7 與圖 6.8，顯示 Ag-cM 與 Ag-cS 皆具有抗菌效果，其中以 Ag-cS 試驗之抗菌效果較為持久，且對起始通量之影響較小。Li et al. (2002) 表示 spacer 為捲式膜的機械支撐，其亦能促進膜表的渦流，因而降低膜表的濃度極化現象，並減少薄膜阻塞(Geraldes et al., 2003; Koutsou et al., 2007)，該渦流現象亦可幫助 spacer 本身表面的膠體或生物顆粒累積，因此，表面覆銀之 spacer 較不易因被阻塞物覆蓋而失去抗菌效果。
圖 6.7 表面覆銀試驗之產水通量變化
圖 6.8 表面覆銀試驗之 TDS 去除率變化
6.2.2 奈米銀改質 RO 膜及 spacer 之抗菌效果

無覆銀、覆銀 RO 膜及覆銀 spacer 試驗之總累積菌數、黏附及增生之細胞量如圖 6.9 之變化，Un-MS、Ag-cM 及 Ag-cS 三試驗膜表隨操作時間之微生物量變化分別表示如圖 6.9 (a)、(b) 及 (c)，圖中顯示三個試程中個別最大微生物總累積量分別出現在 13 th 、10 th 及 14 th 天，微生物量分別為 2.1×10^5 、1.3×10^5 及 1.5×10^5 cells/cm^2，Ag-cM及Ag-cS試驗之最大累積微生物量皆明顯小於Un-MS 試驗。

如圖 6.9 (a) 所示，Un-MS 試驗膜表微生物族群的變化在 5 ~ 10 天為指數生長期，而後達高原期，屬典型的微生物族群生長曲線，膜表微生物未受限地大量繁殖，此外圖中的長條圖顯示微生物族群的大量增加取決於微生物的增生，而非自水體中新黏附的細胞。然而，圖 6.9 (b)中Ag-cM試驗結果，顯示當RO膜表面以奈米銀顆粒改質後，膜表面微生物之生長狀況完全不同於Un-MS試驗，在起始 7 天內總累積微生物維持在很低的量 2×10^4 cells·cm^-2，且未分析到繁殖的微生物量，僅能分析得黏附量，顯示微生物受到膜表披覆奈米銀之影響，會吸附沉澱但不增生繁殖，表示奈米銀確實具有抗菌效果。然而 7 天之後，試驗中開始分析得微生物之增生，總累積微生物量如同Un-MS試驗中之指數成長期，快速增加，奈米銀失去抗菌活性，此乃因為膜表面的奈米銀顆粒被逐漸累積的阻塞物覆蓋，而無法順利釋放銀離子，抗菌效果自然減弱或消失。此結果與前節之產水通量變化一致，當膜表可分析得微生物之增生現象，產水通量便開始減少，再次顯示微生物之增生對 RO 之產水影響甚鉅。

為解決 Ag-cM 所面臨之問題，本研究進行 spacer 表面奈米銀改質的試驗(Ag-cS)，除了期望 Ag-cS 之試驗可降低改質對起始產水通量之影響外，更期望可延長奈米銀之抗菌效果。圖 6.9 (c) 顯示 Ag-cS 試驗之微生物量變化，雖然其最大總累積微生物量與 Ag-cM 試驗大致相等，但其微生物量累
積的機制卻大不相同，直方圖顯示為期 21 天之試驗中，除 4 ~ 7 天僅分析
得些許增生之微生物量外，其餘皆未分析得增生之微生物量，顯示奈米銀
之抗菌效果一直存在，將奈米銀披覆於 spacer 上，成功地使銀離子得以釋
放，因而延長其抗菌效果。

然而試驗中所分析得黏附之微生物量，Ag-cM 及 Ag-cS 試驗皆較
Un-MS 試驗高，主要是因為覆銀後使得膜表面較原始未覆銀之 RO 膜疏水，
因此導致微生物較易黏附；又 spacer 位於二 RO 膜之夾層中，處於水流通
過之路線，對於水體裡之微生物體，除了有吸附之效果外，更存在攔截之
機制，因而導致其較 Ag-cM 有更大量之微生物黏附量。
图 6.9 表面覆银试验之膜表总累积/增生/黏附微生物量之变化
6.2.3 RO 膜表面之微生物生長分佈特性

試驗期間膜表面微生物族群的生長分布如圖 6.10 所示，圖 6.10 (a) 為 Un-MS 試驗，圖中顯示第 4.5 ~ 15 天箭頭所指的部份，可清楚看出同一位置微生物族群的消長，在第 4.5 天微生物量為 1.6×10^5 cell·cm$^{-2}$，第 8 天增加至 2.5×10^5 cell·cm$^{-2}$，至第 12 天減少至 1.15×10^5 cell·cm$^{-2}$，並在第 15 天剩餘 0.2×10^5 cell·cm$^{-2}$，微生物族群此時屬不受限地自然消長。

Ag-cM 試驗顯示如圖 6.10 (b)，試驗持續到第 6 天仍未有明顯的微生物群落生成，相較於 Un-MS 試驗第 4 天箭號所指處即有明顯的微生物群落，Ag-cM 試驗顯然具有抗菌效果，延緩了膜表面微生物族群之發展，然圖 6.10 (b) 箭號所指處顯示，自 10 ~ 17 天微生物量自 0.6×10^5 cell·cm$^{-2}$ 增加到 3.5×10^5 cell·cm$^{-2}$ 再減少至 0.3×10^5 cell·cm$^{-2}$，此階段微生物群落可見明顯的消長情形，相似於 Un-MS 試驗，此微生物量之消長亦顯示細胞之增生繁殖特性。

不同於 Un-MS 與 Ag-cM 試驗，Ag-cS 試驗之微生物族群分布之發展 (圖 6.10 (c)) 顯示出不同的特徵，首先，於試驗啟始後第 3 天，於箭號所指處即可分析得高濃度微生物量，然該高濃度微生物族群在第 6 天之分析隨即消失，取而代之是另外三處之高濃度微生物族群，其餘 10 ~ 12 天之微生物族群發展亦是如此，其膜表面微生物量皆於間隔之二次分析內迅速累積，又隨即消失，此與其微生物量累積以「黏附」之機制為主有關，大量微生物被黏附至膜表面後，隨即被奈米銀之抗菌效果所影響，導致失去活性而死亡或流失。而造成此試驗之微生物瞬間大量黏附之原因，乃由於覆銀後表面較為疏水，使得生物顆粒較易親近，且 spacer 之於流體乃首當其衝，更增加微生物自流體中被截留，而導致有較高的黏附微生物量。儘管 Ag-cS 增加大量吸附微生物，銀離子可隨即使其失去活性，此類吸附、死亡、脫附現象導致微生物族群分布隨時間呈現不規則特性，與 Un-MS 與 Ag-cM 試驗大不相同，此亦證明 Ag-cS 試驗具有較佳且持久之抗菌效果。
<table>
<thead>
<tr>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 4.5</td>
<td>Day 6</td>
<td>Day 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 8</td>
<td>Day 10</td>
<td>Day 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 12</td>
<td>Day 14</td>
<td>Day 12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 15</td>
<td>Day 17</td>
<td>Day 18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 18</td>
<td>Day 21</td>
<td>Day 21</td>
</tr>
</tbody>
</table>

6.3 小結

奈米銀改質 RO 膜及 spacer 皆具有抗菌效果，其中，銀改質 spacer 之抗菌效果較持久，且對起始通量之影響亦較低，後續應針對奈米銀應用於改質之方法進行更深入研究，以求達最理想之抗菌效果。
第七章 結論與建議

7.1 結論

鹹井水淡化廠與海水淡化廠之 RO 膜阻塞特性不同，鹹井水淡化廠之 RO 序前段膜以膠體/顆粒性、有機性及生物性阻塞為主，後段則以碳酸鈣結垢伴隨有機物與微生物細胞之沉澱。海淡廠 RO 膜則與 BWRO 序前段膜阻塞特性較為相似，以膠體/顆粒性、有機性及生物性阻塞為主，雖此，前段 BWRO 膜與 SWRO 膜表面所累積之無機元素含量以 BWRO 較高，並以 Al、Si、Sr、Ba、Ca、Fe 為主，SWRO 則以 Si、Al、Fe、Ca、Mg 為主，其含量皆較 BWRO 低，此外不同於 BWRO，SWRO 膜表累積之 EPS 成分以多醣類為主。

季節及 RO 系統之濃縮對海水淡化 RO 膜之生物性阻塞具有顯著之影響，夏季之生物性阻塞較冬季嚴重，且微生物代謝所釋放之 EPS 亦較多，並導致較多量之 Ca 與 Si 於膜表累積，而具有季節性之差異。此外，鐵氧化菌之存在為 RO 膜之 Fe 元素累積之主因，並導致系統不鏽鋼或鐵材質之銹蝕，進而產生氧化鐵阻塞 RO 膜。進流水隨著 RO 膜之濃縮，其生物性阻塞於 RO 序列末端之膜，較前端 RO 膜輕微，微生物之增生於後段被抑制。季節性與濃縮效應之於 Si 阻塞之影響，皆顯示其與膜表 EPS 含量趨勢一致，說明膜表 Si 累積與生物性阻塞存在相當程度之關係。

奈米銀改質 RO 膜及 spacer 皆具有抗菌效果，其中，銀改質 spacer 之抗菌效果較持久，且對起始通量之影響較低，後續應針對奈米銀應用於表面改質較適宜之方法進行更深入研究，以求達最理想之抗菌效果。
7.2 建議

根據本研究之實驗結果，提出對於實廠操作與未來研究之建議如下：

1. 海淡廠於之全廠管線消毒頻率，夏季應高於冬季。

2. 海淡廠之 RO 序列，前端應使用抗生物性阻塞性能較高之膜，以抵抗微生物之增生，後段則可採用較為親水之 RO 膜，主要在於減少微生物之黏附。

3. 生物性阻塞可能為導致膜表面 Fe 元素累積之主因，並導致系統不鏽鋼或鐵材質之腐蝕，產生之氧化鐵將於生物膜表面形成保護層，使清洗更加困難，建議以還原劑作為 RO 清洗之第一步驟。

4. 生物性阻塞與無機性結垢存在相當程度之關係，且微生物於 RO 系統裡之生理變化及系統中存在的微生物種類可作更進一步探討。

5. 奈米銀具有有效之抗菌效果，未來可針對較適用之改質方式進行更進一步研究。

6. 抗生物性阻塞之相關研究除著重於前處理與膜本身之改質外，亦可朝 spacer 之改良方向著手。
参考文献

Flemming H.C. (1992) Mechanistic aspects of reverse osmosis membrane biofouling and

Holloway, W., Martinez, A.R., Oh, D.J., Francis, K., Ramakrishna, R. and Palsson, B.O. (1999) Key adhesion molecules are present on long podia extended by hematopoietic cells, Cytometry, 37,171–177.

geothermal lake in Iceland, Extremophiles, 1, 1431-0651.

戴怡德、蕭博元、伍德馨、傅應凱 (2004) 奈米級加工材料於紡織及生醫材上之應用研究，行政院原子能委員會委託研究計畫研究報告，932001 INER 022。
附錄 A

菌種背景資料

*Sediminibacter furfuriosus*是格蘭氏陰性菌，首次為學者從日本Odawara城市海岸之海洋沉積物中分離出，屬*Flavobacteriaceae*科，細胞長 1.0 ~ 2.5 µm、寬 0.5~0.7 µm，較適成長溫度為 10 ~ 37 °C，以 25 ~ 30 °C為最佳，較適成長之NaCl濃度為 1 ~ 6 % (w/v)，以 3 ~ 4 %最佳。在缺乏NaCl或NaCl濃度大於 6 % (w/v)則不成長(Khan *et al*., 2007)。

Pseudoalteromonas elyakovii，亦名為*Alteromonas elyakovii*或*Alteromonas elykovii*，首次在俄羅斯 Troitsa Bay (日本海) 所分離出，為格蘭氏陰性菌，絕對好氧，具鞭毛之桿狀菌，直徑 0.5 ~ 0.8µm，長 1.8 ~ 4.0µm，鈉離子為其成長必須，成長於 10 ~ 37℃，25 ~ 30℃為最佳，高於 40℃則不成長(Sawabe *et al*., 2000)。

Marinobacter aquaeolei，格蘭氏陰性菌，細胞大小為 1.4 ~ 1.6 µm 長、0.4 ~ 0.5 µm 寬，成長於溫度 13 ~ 50℃，以 30℃為最佳，成長所需 NaCl 濃度為 0 ~ 20%，以 5%為最佳(Huu *et al*., 1999)。

Thalassobius aestuarii，菌體為卵形，大小為 0.4 ~ 0.6 × 1.1 ~ 5.3 µm，無鞭毛且不具活動力，菌落成長於好氧環境、pH 6 ~ 11 (pH 7 最佳)、1 ~ 7% NaCl (2%最佳)及 15 ~ 35℃ (35℃ 最佳)，首次分離自韓國 Ganghwa 島(Yi & Chun, 2006)。

*Winogradskyella poriferorum*是格蘭氏陰性菌，為桿狀菌，具快速滑動力，絕對好氧，成長於 12 ~ 44℃ (4 或 52℃不成長)、pH 6·0 ~ 10·0、NaCl 1 ~ 4 %，首次被分離自巴哈馬(Lau *et al*., 2005)。

*Silicibacter lacuscaerulensis*為格蘭氏陰性桿狀菌，可在 22 ~ 50 ℃環境下成長，45℃時為最佳，最佳生長NaCl 濃度為 3.5 ~ 4 %，細胞大小直徑
為 0.6 ～ 0.8 μm，長度 9 ～ 18 μm，首次自冰島地熱湖 Blue Lagoon 分離出，該湖泊為一富含矽元素之高鹽度湖泊 (Petursdottir & Kristjansson, 1997)。

Winogradskyella thalassocola 細胞大小為 4 ～ 7.3 μm 長，0.5 ～ 0.7 μm 寬，成長於 4 ～ 33 °C，最佳為 21 ～ 23 °C，較適成長之 NaCl 濃度為 1 ～ 8 %，首次自日本海之褐藻分離出 (Nedashkovskaya et al., 2005)。

Muricauda aquimarina，桿狀菌，0.2 ～ 0.5 μm 寬，2.5 ～ 6.0 μm 長，為格蘭氏陰性菌，較適生長溫度為 30 ～ 37 °C，較適成長之 NaCl 濃度為 2 %，NaCl 濃度大於 10 % 則不成長，首度自韓國東海分離出 (Yoon et al., 2005)。

Halomonas glaciei，首度自澳洲沿岸結冰之海水中分離出，於 4 ～ 22 °C 呈現線性成長，可耐受高至 15 % 之 NaCl，其具有多醣類水解酵素，可將多醣類快速水解 (Reddy et al., 2003; Celussi et al., 2008)。

planctomycete GMD14H10，首度自美國東部藻海 (sargasso sea) 分離出。

Arenibacter troitsensis，首度自日本海 Troitsa Bay 底泥所分離出，絕對好氧，細胞大小為 0.4 ～ 0.7 μm 寬，3 ～ 5 μm 長，成長發生於 1 ～ 6 % NaCl 及 10 ～ 42 °C (Nedashkovskaya et al., 2003)。

Halomonas gomseomensis，首度自韓國分離出，桿狀菌，大小為 0.6 ～ 0.8 × 1.8 ～ 2.4 μm，具活動性，有鞭毛，成長發生於 5 ～ 45 °C (25 ～ 30 °C 最佳) 及 1 ～ 20 % NaCl (8 ～ 12 % 最佳) (Kim et al., 2007)。
<table>
<thead>
<tr>
<th>Species</th>
<th>Kingdom</th>
<th>Phylum</th>
<th>Class</th>
<th>Order</th>
<th>Family</th>
<th>Genus</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. furfuratosus</td>
<td>Bacteria</td>
<td>Bacteroidetes</td>
<td>Flavobacteria</td>
<td>Flavobacteriales</td>
<td>Flavobacteriaceae</td>
<td>Sediminibacter</td>
</tr>
<tr>
<td>P. elyakovii</td>
<td>Bacteria</td>
<td>Proteobacteria</td>
<td>γ-proteobacteria</td>
<td>Alteromonadales</td>
<td>Pseudoalteromonadaeae</td>
<td>Pseudoalteromona</td>
</tr>
<tr>
<td>M. aquaeolei</td>
<td>Bacteria</td>
<td>Proteobacteria</td>
<td>γ-proteobacteria</td>
<td>Alteromonadales</td>
<td>Alteromonadaeae</td>
<td>Marinobacter</td>
</tr>
<tr>
<td>T. aestuarii</td>
<td>Bacteria</td>
<td>Proteobacteria</td>
<td>α-proteobacteria</td>
<td>Rhodobacterales</td>
<td>Rhodobacteriaceae</td>
<td>Thalassobius</td>
</tr>
<tr>
<td>W. poriferorum</td>
<td>Bacteria</td>
<td>Bacteroidetes</td>
<td>Flavobacteria</td>
<td>Flavobacteriales</td>
<td>Flavobacteriaceae</td>
<td>Winogradskyella</td>
</tr>
<tr>
<td>S. lacuscaerulensis</td>
<td>Bacteria</td>
<td>Proteobacteria</td>
<td>α-proteobacteria</td>
<td>Rhodobacterales</td>
<td>Rhodobacteriaceae</td>
<td>Ruegeria</td>
</tr>
<tr>
<td>W. thalassocola</td>
<td>Bacteria</td>
<td>Bacteroidetes</td>
<td>Flavobacteria</td>
<td>Flavobacteriales</td>
<td>Flavobacteriaceae</td>
<td>Winogradskyella</td>
</tr>
<tr>
<td>M. aquimarina</td>
<td>Bacteria</td>
<td>Bacteroidetes</td>
<td>Flavobacteria</td>
<td>Flavobacteriales</td>
<td>Flavobacteriaceae</td>
<td>Muricauda</td>
</tr>
<tr>
<td>H. glaciei</td>
<td>Bacteria</td>
<td>Proteobacteria</td>
<td>γ-proteobacteria</td>
<td>Oceanospirillae</td>
<td>Halomonadaeae</td>
<td>Halomonas</td>
</tr>
<tr>
<td>planctomycete GMD14H10</td>
<td>Bacteria</td>
<td>Planctomycetes</td>
<td>Planctomycetacia</td>
<td>Planctomycetales</td>
<td>Planctomycetaceae</td>
<td>planctomycete</td>
</tr>
<tr>
<td>H. gomseomensis</td>
<td>Bacteria</td>
<td>Proteobacteria</td>
<td>γ-proteobacteria</td>
<td>Oceanospirillae</td>
<td>Halomonadaeae</td>
<td>Halomonas</td>
</tr>
<tr>
<td>A. troitsensis</td>
<td>Bacteria</td>
<td>Bacteroidetes</td>
<td>Flavobacteria</td>
<td>Flavobacteriales</td>
<td>Flavobacteriaceae</td>
<td>Arenibacter</td>
</tr>
</tbody>
</table>