Contents

Abstract (in Chinese)

Abstract (in English)

Acknowledgement

Contents

Figure Captions

Table Captions

Chapter 1

Introduction

1.1 Introduction of Device Technology

1.2 PHEMT Performance Improvement by Schottky barrier layer

1.3 Gate orientation dependence of InAlP/InGaAs PHEMTs

1.4 Outline of this study

Chapter 2

Study of Schottky Contacts on InAlP

2.1 Theory of Schottky Contacts

2.2 Interfacial Reaction between Semiconductor and Schottky metal

2.3 Use Pt as schottky contact metal for E-mode device fabrication
Chapter 3 Device structure and Fabrication 19

3.1 Device Structure 19

3.2 Device Fabrication 19

3.2.1 Wafer Cleaning 20

3.2.2 Device Isolation 20

3.2.3 Ohmic Contact 20

3.2.4 Gate Formation 21

3.2.5 Selective Etching for Gate Recess 21

3.2.6 Device passivation and contact via formation 22

3.3 Schottky diode fabrication 23

3.4 InAlP/InGaAs PHEMTs with Ti/Pt/Au, Pt/Ti/Pt/Au and W/Ti/Pt/Au schottky contacts 23

3.5 Characteristics and Measurements 24

3.5.1 Specific contact resistivity 24

3.5.2 Breakdown voltage (V_B) 25

3.5.3 Transconductance (G_m) 25

3.5.4 Pinch off voltage(V_P)/ Threshold voltage(V_T) 26

3.6 Gate orientation 26

Chapter 4 Experimental Results and Discussion 27

4.1 Mesa Isolation 27

4.2 Ohmic contact 27

4.3 Optical gate 28

4.4 Selective etching in gate recess and Gate metallization 29

4.5 InAlP schottky diodes 29

4.5.1 The Ti/Pt/Au/InAlP Schottky Metal Structures 30

VII
<table>
<thead>
<tr>
<th>Section</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5.1-a</td>
<td>Interfacial Properties of Ti/Pt/Au Schottky Contact</td>
</tr>
<tr>
<td>4.5.1-b</td>
<td>Characteristic of Ti/Pt/Au Schottky contact</td>
</tr>
<tr>
<td>4.5.1-c</td>
<td>C-V measurement of Ti/Pt/Au Schottky contact</td>
</tr>
<tr>
<td>4.5.1-d</td>
<td>Sheet resistance of Ti/Pt/Au Schottky contact</td>
</tr>
<tr>
<td>4.5.1-e</td>
<td>TEM image of the annealed Ti/Pt/Au sample after thermal annealing</td>
</tr>
<tr>
<td>4.5.2</td>
<td>The Pt/Ti/Pt/Au/InAlP Schottky Metals Structures</td>
</tr>
<tr>
<td>4.5.2-a</td>
<td>Characteristics of Pt/Ti/Pt/Au Schottky contact</td>
</tr>
<tr>
<td>4.5.2-b</td>
<td>C-V measurement of Pt/Ti/Pt/Au contact</td>
</tr>
<tr>
<td>4.5.2-c</td>
<td>Sheet resistance of Pt/Ti/Pt/Au on InAlP</td>
</tr>
<tr>
<td>4.5.2-d</td>
<td>TEM Image of Pt/Ti/Pt/Au sample after thermal annealing</td>
</tr>
<tr>
<td>4.5.3</td>
<td>The W/Ti/Pt/Au/InAlP Schottky Metal Structures</td>
</tr>
<tr>
<td>4.5.3-a</td>
<td>Interfacial properties of W/Ti/Pt/Au Schottky contact</td>
</tr>
<tr>
<td>4.5.3-b</td>
<td>Characteristics of W/Ti/Pt/Au Schottky contact</td>
</tr>
<tr>
<td>4.5.3-c</td>
<td>C-V measurement of W/Ti/Pt/Au contact</td>
</tr>
<tr>
<td>4.5.3-d</td>
<td>Sheet resistance of W/Ti/Pt/Au on InAlP</td>
</tr>
<tr>
<td>4.6</td>
<td>DC Characteristics of the D-mode and E-mode InAlP PHEMTs with Ti/Pt/Au Gate</td>
</tr>
<tr>
<td>4.7</td>
<td>Effect of gate orientation on InAlP/InGaAs PHEMT characteristics</td>
</tr>
<tr>
<td>4.8</td>
<td>Performance comparison of InAlP/InGaAs PHEMTs</td>
</tr>
</tbody>
</table>
with Ti/Pt/Au, Pt/Ti/Pt/Au and W/Ti/Pt/Au schottky metal contacts under thermal treatments.

4.8.1 Performance of InAlP/InGaAs PHEMTs with Ti/Pt/Au contact

4.8.2 Performance of InAlP/InGaAs PHEMTs with Pt/Ti/Pt/Au contact

4.8.3 Performance of InAlP/InGaAs PHEMTs with W/Ti/Pt/Au contact

Chapter 5 Conclusions

References

Figures

Tables