利用水熱法製備氧化鋁摻雜氧化鋅奈米線

及其性質的探討

研究生：蔡信賢 指導教授：曾俊元博士

國立交通大學

電子工程學系 電子研究所碩士班

摘 要

本研究探討，在低溫的環境中利用水熱法的方式來形成氧化鋅奈米線。藉著製程參數的改變包括化學溶液中成長前後的 pH 值調整，溶液的濃度和成長的時間，來得到有不同的密度和長度的氧化鋅奈米線。進而經由高溫熱處理的方式，可改善氧化鋅奈米線的光學性質。另外利用水熱法成長所造成的晶體缺陷，配合半導體的擴散製程，將鋁利用加熱擴散的方式，摻雜鋁到氧化鋅奈米線中。並探討鋁摻雜氧化鋅奈米線的光學性質、晶體微結構、表面型態以及鋁在氧化鋅奈米線內的擴散情形。同時分析其在熱處理過程中，表面和內部缺陷在不同狀況之下受到破壞和修補的情形。
Al$_2$O$_3$ doped ZnO nanowires prepared by the hydrothermal method and their properties

Student：H.H. Tsai Advisor：Dr. T. Y.Tseng

Department of Electronics Engineering & Institute of Electronics
National Chiao Tung University

ABSTRACT

We prepared the ZnO nanowires by utilizing the hydrothermal method at the low temperatures. By controlling the process conditions such as pH value before and after growing, the concentration of the chemical solution, and growth time, the ZnO nanowires with the different density and the length of the ZnO nanowires can be obtained. With the high temperature thermal treatment, the optical properties of the ZnO nanowires can be improved. The aluminum can be diffused into ZnO nanowires at high temperature via the crystal defects produced by the hydrothermal method to obtain Al-doped ZnO nanowires. The optical properties, micro structure, surface morphology and diffusion profile of Al in the ZnO nanowires are studied. We also analyze the surface and inside defects destroyed and mended under different processing conditions during heat treatment.
Contents

Abstract (Chinese) ... I
Abstract (English) ... II
Contents .. III
Figure Captions .. VII
Table Captions ... XII

Chapter 1 Introduction ... 1

Chapter 2 Paper review ... 2

2.1 The properties of zinc oxide .. 2

2.2 The doped properties of the zinc oxide 3

2.3 The growth method of the ZnO nanowires 4

2.3.1 VLS (vapor-liquid-solid) method 4

2.3.2 The template method .. 5

2.3.3 Hydrothermal method ... 6

2.4 The optical properties of the ZnO 7
Chapter 3 Experiments

3.1 The process of experiment

3.1.1 The process of the ZnO nanowires

3.1.2 The process of the Al-doped ZnO nanowires

3.2 Preparation of the Si substrate and the ZnO target

3.3 Deposition of the ZnO seeding layer

3.4 Synthesized of ZnO nanowires on Si wafer

3.5 Synthesized of Al-doped ZnO nanowires on Si wafer

3.6 The experimental equipment

3.6.1 RF Magnetron Sputter System

3.6.2 Thermal coater

3.6.3 Oven

3.7 The measured equipment

3.7.1 FE-SEM

3.7.2 TEM and EDX

3.7.3 Cathodoluminescence (CL)

3.7.4 X-ray Diffraction (XRD)

Chapter 4 Results and discussion
4.1 The pure ZnO nanowires

4.1.1 Characterization of the ZnO seeding layer

4.1.2 Characteristics of the ZnO nanowires

(1) The pH value of the solution

(2) The chemical solution concentration

(3) The growth rate

(4) The TEM analysis

(5) The optical properties

4.1.3 The optical properties of the pure ZnO nanowires after the thermal treatment under different atmospheres

4.2 The Al-doped ZnO nanowires

4.2.1 The hydrothermal method to form Al-doped ZnO nanowires

4.2.2 The formation and the diffusion mechanism of Al-doped ZnO nanowires

4.2.3 The various thermal treatment in oxygen atmosphere

4.2.3.1 The optical properties of the Al-doped ZnO nanowires

4.2.3.2 The surface morphology and the structure of the Al-doped ZnO nanowires

4.2.4 The various thermal treatment in nitrogen atmosphere

4.2.4.1 The optical properties of the Al-doped ZnO nanowires

4.2.4.2 The surface morphology and the structure of the Al-doped ZnO nanowires
4.2.5 The diffusion of Al in the ZnO nanowire 44

Chapter 5 Conclusions ... 47
References ... 49
Vita ... 96
Figure Captions

Figure 2-1 The lattice structure of the ZnO ...53
Figure 2-2 The schematic geometry of ZnO nanowires growth. 1. Furnace tube, 2. slender tube, 3. source, 4. template, 5. alumina supporter ...54
Figure 2-3 The growth process of the ZnO nanowires by the hydrothermal method.....54
Figure 2-4 The optical spectrum ..55
Figure 2-5 The mechanism of the cathodluminescence..56
Figure 2-6 The draft of the calculated defect’s levels in ZnO film56
Figure 2-7 Schematic showing the energy-band diagram of a ZnO grain in cross section. The conduction band (E_c), valance band (E_v), Fermi level (E_F), paramagnetic oxygen vacancy (V_O^*) level, and the diamagnetic V_O^{**} area (hatched) in the grain-boundary depletion region are visualized for a grain with a (a) low and (b) high free-carrier density. The circles and arrows symbolize electron–hole recombination events which emit green light...57
Figure 3-1 The structure of the Al-doped ZnO nanowires..58
Figure 4-1 The SEM image of the ZnO buffer layer grown on Si substrate.................59
Figure 4-2 The X-ray diffraction pattern of ZnO buffer layer grown on Si substrate ⋯59
Figure 4-3 The pourbaix diagram of the Zn(OH)$_2$...60
Figure 4-4 The SEM image of the concentration of the chemical solution was (a) 0.08M (b) 0.10M (c) 0.12M (d) 0.14M (e) 0.16M ……………………………61

Figure 4-5 The X-ray diffraction pattern of ZnO nanowires grown on Si wafer in different solution concentration at the same time…………………………62

Figure 4-6 The SEM image of the growth time of ZnO nanowires was (a)(b) 1 hour (c)(d) 1.5 hours (e)(f) 2 hours (g)(h) 2.5 hours (i)(j) 3 hours………………63

Figure 4-7 The growth rate of the ZnO nanowires grew on Si wafer ………………………65

Figure 4-8 The X-ray diffraction pattern of ZnO nanowires grew on Si wafer at different growth time in the same solution concentration ………………………66

Figure 4-9 The (a)TEM image (b)HRTEM image (c)SAED (d)EDX spectrum of the ZnO nanowire…………………………………………67

Figure 4-10 The cathodluminescence (CL) spectra of the ZnO nanowire…………..68

Figure 4-11 The cathodluminescence (CL) spectra of the ZnO nanowire under the different annealing temperature in oxygen atmosphere………………69

Figure 4-12 The magnification of figure 4-11 from 425 nm to 700 nm………………69

Figure 4-13 The cathodluminescence (CL) spectra of the ZnO nanowire under the different annealing temperature in nitrogen atmosphere…………………70

Figure 4-14 The magnification of figure 4-13 from 425 nm to 700 nm……………70

Figure 4-15 The ratio of I_{UV}/I_{DLE} after annealing in oxygen atmosphere and nitrogen atmosphere…………………………………………………………71
Figure 4-16 The cathodluminescence (CL) spectra of the ZnO nanowire under the different annealing temperature in oxygen atmosphere………………72

Figure 4-17 The cathodluminescence (CL) spectra of the ZnO nanowire under the different annealing temperature in nitrogen atmosphere………………72

Figure 4-18 The structure of the Al-doped ZnO nanowires ……………………………73

Figure 4-19 The primitive unit cell of the ZnO structure ……………………………74

Figure 4-20 The cathodluminescence (CL) spectra of Al-doped ZnO nanowires at 550℃ under different thermal process time in the oxygen atmosphere …………75

Figure 4-21 The magnification of figure 4-20 from 450 nm to 700 nm …………………75

Figure 4-22 The cathodluminescence (CL) spectra of Al-doped ZnO nanowires at 600℃ under different thermal process time in the oxygen atmosphere …………76

Figure 4-23 The magnification of figure 4-22 from 450 nm to 700 nm …………………76

Figure 4-24 The cathodluminescence (CL) spectra of Al-doped ZnO nanowires at 650℃ under different thermal process time in the oxygen atmosphere …………77

Figure 4-25 The magnification of figure 4-24 from 450 nm to 700 nm……………………77

Figure 4-26 The ratio of I_{UV}/I_{DLE} in oxygen atmosphere at different thermal process temperature……………………………………………………………..78

Figure 4-27 The SEM image of the Al-doped ZnO nanowires at 550℃ (a)(b) 1 hour (c)(d) 3 hours (e)(f) 5 hours (g)(h) 7 hours in the oxygen atmosphere …………79
Figure 4-28 The SEM image of the Al-doped ZnO nanowires at 600°C (a)(b) 1 hour (c)(d) 3 hours (e)(f) 5 hours (g)(h) 7 hours in the oxygen atmosphere80

Figure 4-29 The SEM image of the Al-doped ZnO nanowires at 650°C (a)(b) 1 hour (c)(d) 3 hours (e)(f) 5 hours (g)(h) 7 hours in the oxygen atmosphere81

Figure 4-30 The X-ray diffraction pattern of Al-doped ZnO nanowires grown at 550°C in oxygen atmosphere ...82

Figure 4-31 The X-ray diffraction pattern of Al-doped ZnO nanowires grown at 600°C in oxygen atmosphere ...82

Figure 4-32 The X-ray diffraction pattern of Al-doped ZnO nanowires grown at 650°C in oxygen atmosphere ...83

Figure 4-33 The cathodluminescence (CL) spectra of Al-doped ZnO nanowires at 550°C under different thermal process time in the nitrogen atmosphere84

Figure 4-34 The magnification of figure 4-33 from 450 nm to 700 nm84

Figure 4-35 The cathodluminescence (CL) spectra of Al-doped ZnO nanowires at 600°C under different thermal process time in the nitrogen atmosphere85

Figure 4-36 The magnification of figure 4-35 from 450 nm to 700 nm85

Figure 4-37 The cathodluminescence (CL) spectra of Al-doped ZnO nanowires at 650°C under different thermal process time in the nitrogen atmosphere86

Figure 4-38 The magnification of figure 4-37 from 450 nm to 700 nm86
Figure 4-39 The ratio of I_{UV}/I_{DLE} in nitrogen atmosphere at different thermal process temperature………………………………………………………………………………87

Figure 4-40 The SEM image of the Al-doped ZnO nanowires at 550°C (a)(b) 1 hour (c)(d) 3 hours (e)(f) 5 hours (g)(h) 7 hours in the nitrogen atmosphere ……88

Figure 4-41 The SEM image of the Al-doped ZnO nanowires at 600°C (a)(b) 1 hour (c)(d) 3 hours (e)(f) 5 hours (g)(h) 7 hours in the nitrogen atmosphere ……89

Figure 4-42 The SEM image of the Al-doped ZnO nanowires at 650°C (a)(b) 1 hour (c)(d) 3 hours (e)(f) 5 hours (g)(h) 7 hours in the nitrogen atmosphere ……90

Figure 4-43 The X-ray diffraction pattern of Al-doped ZnO nanowires grown at 550°C in nitrogen atmosphere…………………………………………………………91

Figure 4-44 The X-ray diffraction pattern of Al-doped ZnO nanowires grown at 600°C in nitrogen atmosphere…………………………………………………………91

Figure 4-45 The X-ray diffraction pattern of Al-doped ZnO nanowires grown at 650°C in nitrogen atmosphere…………………………………………………………92

Figure 4-46 The diffusion of Al into the ZnO nanowires at 550°C heating 7 hours in oxygen atmosphere……………………………………………………………………94

Figure 4-47 The diffusion of Al into the ZnO nanowires at 550°C heating 5 hours in nitrogen atmosphere……………………………………………………………………94

Figure 4-48 The lattice constant c of Al in the ZnO nanowires at 550°C in oxygen and nitrogen atmosphere……………………………………………………………………95
Table Captions

Table 4-1 The pH value of the chemical solution in different concentration before and after growing ...-60

Table 4-2 The atomic percent of Al in the ZnO nanowires under different thermal process time in oxygen atmosphere in different distance from the Al thin film at 550°C ...93

Table 4-3 The atomic percent of Al in the ZnO nanowires under different thermal process time in nitrogen atmosphere in different distance from the Al thin film at 550°C ...93