Fig. 4-1 Substrate parameters versus emitter length.
Fig. 4-2 The schematic cross section of the SiGe HBT.
Fig. 4-3 Excess phase delay versus emitter width.
Fig. 4-4 Intrinsic base-emitter capacitance versus emitter width.
Fig.4-5 Intrinsic base resistance versus emitter width
Fig. 4-6 Intrinsic base resistance versus finger number
Fig. 4-7 The schematic of Multi-cell structure.
Fig. 4-8 Top View of (a) Ring Collector - Ring Substrate, (b) Strip Collector - Ring Substrate, (c) Strip Collector - Strip Substrate and (d) Ring Collector – Strip Collector
Fig. 4-9 Collector-voltage dependence of the extracted C_{sub} for SiGe HBTs biased at $V_{BE}=0\text{V}$ and V_{CE} from -0.4V to 3V.
Fig. 4-10 Collector-voltage dependence of the extracted C_{bh} for SiGe HBTs biased at $V_{BE}=0V$ and V_{CE} from -0.4V to 3V.
Fig. 4-11 Collector-voltage dependence of the extracted R_{bb} for SiGe HBTs biased at $V_{BE}=0V$ and V_{CE} from -0.4V to 3V.
Fig. 4-12 (a) Ring Collector – Parallel Ring Substrate, (b) Ring Collector – Outer Ring Substrate
Fig. 4-13 Collector-voltage dependence of the extracted C_{sub} for SiGe HBTs biased at $V_{BE}=0$V and V_{CE} from -0.4V to 3V.
Fig. 4-14 Collector-voltage dependence of the extracted C_{bk} for SiGe HBTs biased at $V_{BE}=0$V and V_{CE} from -0.4V to 3V.
Fig. 4-15 Collector-voltage dependence of the extracted R_{bb} for SiGe HBTs biased at $V_{BE}=0\,\text{V}$ and V_{CE} from -0.4\,\text{V} to 3\,\text{V}