# 總目錄

<table>
<thead>
<tr>
<th>頁次</th>
<th>中文摘要</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>英文摘要</td>
<td>iii</td>
</tr>
<tr>
<td>v</td>
<td>總目錄</td>
<td></td>
</tr>
<tr>
<td>ix</td>
<td>表目錄</td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>圖目錄</td>
<td></td>
</tr>
</tbody>
</table>

## 第一章 序言

1. 1-1 背景介紹 1
2. 1-2 奈米微粒之應用 3
   1-2-1 奈米微粒用於眼科藥物的載體 4
   1-2-2 金奈米微粒在 DNA 方面的檢測 4
   1-2-3 奈米碳管在高靈敏度氣體偵測器上的應用 6
3. 1-3 研究動機與目的 7
4. 1-4 實驗架構 8

## 第二章 奈米材料之特性及製備

1. 2-1 表面效應 9
2. 2-2 尺寸效應 10
2-3 奈米粒子間之交互作用

2-4 製備方法

2-4-1 物理法
2-4-2 化學法

第三章 文獻回顧

3-1 三五族奈米材料之製備
3-2 InP 奈米粒子之製備

3-2-1 有機金屬合成法
3-2-2 水熱法
3-2-3 其他方法

第四章 實驗方法

4-1 實驗藥品
4-2 儀器設備與原理
4-3 實驗步驟

4-3-1 固態置換反應
4-3-2 水熱法
4-3-3 非配位性溶劑進行去鹵素矽化反應
4-3-4 以 DDA 和 TOP 為包覆劑進行去鹵素矽化反應
第五章 結果與討論

5-1 固態置換反應合成奈米 InP

5-1-1 晶相結構鑑定

5-1-2 電子顯微鏡觀測結果與分析

5-2 水熱法合成奈米 InP

5-2-1 晶相結構鑑定

5-2-2 電子顯微鏡觀測結果與分析

5-2-3 後續的研究

5-3 使用非配位溶劑進行去鹵素矽化反應

5-3-1 螢光光譜鑑定與分析

5-3-2 晶相結構鑑定

5-3-3 電子顯微鏡觀測

5-4 以 DDA 和 TOP 為包覆劑進行去鹵素矽化反應

5-4-1 光譜量測結果與分析

5-4-2 晶相結構鑑定及電子顯微鏡觀測

5-5 以去鹵素矽化法製備奈米 (Ga_{0.2} In_{0.8}) P

5-5-1 螢光光譜量測結果與分析

5-5-2 電子顯微鏡觀測與元素分析結果
第六章 結論

參考文獻
表 目 錄

表 1 II-VI 族和 III-V 族化合物之常數列表 53
表 2 立方體粒子的大小及表面原子比率 53
表 3 銅粒子粒徑與表面能量比率 54
表 4 金屬奈米粒子的熔點與燒結溫度 54
表 5 以醋酸銦為起始物之實驗參數及結果 55
表 6 改變 ligand 種類之實驗參數及結果 55
表 7 改變 Palmitic acid 比例之實驗參數及結果 56
# 圖目錄

<table>
<thead>
<tr>
<th>圖</th>
<th>頁次</th>
</tr>
</thead>
<tbody>
<tr>
<td>圖 1</td>
<td>SLS 法之示意圖</td>
</tr>
<tr>
<td>圖 2</td>
<td>鈉金屬過量時以固態置換法所得產物之 X 光繞射圖譜</td>
</tr>
<tr>
<td>圖 3</td>
<td>氯化銦過量時以固態置換法所得產物之 X 光繞射圖譜</td>
</tr>
<tr>
<td>圖 4</td>
<td>固態置換法所得反應產物之 X 光繞射圖譜</td>
</tr>
<tr>
<td>圖 5</td>
<td>固態置換反應所得產物之 EDS 圖譜</td>
</tr>
<tr>
<td>圖 6</td>
<td>固態置換反應所得產物之掃描式電子顯微鏡影像</td>
</tr>
<tr>
<td>圖 7</td>
<td>水熱法產物之 X 光繞射圖譜</td>
</tr>
<tr>
<td>圖 8</td>
<td>加過量紅磷反應所得產物 X 光繞射圖譜</td>
</tr>
<tr>
<td>圖 9</td>
<td>水熱法產物掃描式電子顯微鏡影像</td>
</tr>
<tr>
<td>圖 10</td>
<td>以非配位溶劑進行去鹼素矽化反應所得產物之 X 光繞射圖譜</td>
</tr>
<tr>
<td>圖 11</td>
<td>以油酸為配位基所得產物之 UV-Vis 吸收光譜</td>
</tr>
<tr>
<td>圖 12</td>
<td>以油酸為配位基反應所得產物之 PL 與 PLE 光譜</td>
</tr>
<tr>
<td>圖 13</td>
<td>以硬脂酸為配位基反應所得產物之 UV-Vis 吸收光譜</td>
</tr>
<tr>
<td>圖 14</td>
<td>以硬脂酸為配位基反應所得產物之 PL 與 PLE 光譜</td>
</tr>
</tbody>
</table>
圖 15 以棕櫚酸為配位基反應所得產物之 UV-Vis 吸收光譜

圖 16 以棕櫚酸為配位基反應所得產物之 PL 與 PLE 光譜

圖 17 以硬脂酸為配位基反應所得產物萃取離心後 PL 與 PLE 光譜

圖 18 以棕櫚酸為配位基反應所得產物萃取離心後 PL 與 PLE 光譜

圖 19 CdTe 萃取前後 PL 及 PLE 光譜之比較

圖 20 以棕櫚酸為配位基反應產物之奈米 InP TEM 影像

圖 21 以去鹵矽化反應在不同成核溫度下 1 小時後所得奈米 InP UV-Vis 光譜

圖 22 4 小時後以去鹵矽化反應在不同成核溫度下所得奈米 InP UV-Vis 光譜

圖 23 22 小時後以去鹵矽化反應在不同成核溫度下所得奈米 InP UV-Vis 光譜

圖 24 DDA 與 TOP 同時包覆奈米 InP 粒子經過清洗後所測得 PL 光譜之比較

圖 25 以 DDA 和 TOP 為包覆劑所得 InP 奈米粒子 ED 圖譜

圖 26 以 DDA 和 TOP 為包覆劑所得 InP 奈米粒子 HRTEM 影像
圖 27 以 DDA 和 TOP 為包覆劑所得 InP 奈米粒子 HRTEM 影像

圖 28 (Ga_{0.2}In_{0.8})P 奈米粒子之UV-Vis 光譜

圖 29 (Ga_{0.2}In_{0.8})P 奈米粒子之PL 與 PLE 光譜

圖 30 (Ga_{0.2}In_{0.8})P 奈米粒子之EDS 圖譜

圖 31 (Ga_{0.2}In_{0.8})P 奈米粒子 HRTEM 影像