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the response "other” are relatively unimportant for consumers.
Next, we illustrate the ranking rule of the method with Bradley-Terry model. It is easier
than above rule. In this method, we compute all ~ values and according to the size of values,

we can obtain an order with descending. Hence, the order is the rank of these responses.

4 Simulation

In this section, a simulation study is conducted to evaluate the performance of these
methods in this section. Because the Bayesian ranking method has prior distribution as-
sumption, it is different from other methods. Hence, we do not discuss Bayesian rank-
ing method in the simulation study. The true rank of these responses is according to
the order of m(;. In this study, we regard two responses have the same rank if |m; —
m(jy| < € where € is a constant in a tolerance region. We compare the ranks of the 5
methods in terms of consistent rate, which is defined as the proportion that the rank
of these methods and the true rank are consistent for n respondents in 1000 replicates.
For example, let mgo00 = 0.032, 71000 = 0.015, moo100 = 0.087, moo010 = 0.061, 7oopo1 =
0.009, m11000 = 0.008, T19100 = 0.0082, 710010 = 0.068, T10001 = 0.002, Tp1100 = 0.002, 791010 =
0.00005, 1001 = 0.0005, meo110 = 0.0005, T0101 = 0.00006, To0011 = 0.00319 ,0thers equal to
0.044 and € = 0.01, resulting m = 0.626, m, = 0.501, 73 = 0.585, 7y = 0.617, 5 = 0.479.
Thus the true is 1 4 3 1 5. We obtain a sample, and use the Wald test to obtain the

rank 1 3 3 1 5. If the rank of each response derived from the the Wald test is smaller
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than the true rank, we call this phenomenon is consistent.
ample is consistent. The codes to run « in the Bradley-Terry models can be download
in http://sites.stat.psu.edu/~dhunter/code/btmatlab/. We apply these programs to
rank responses in a multiple response question. Since there are three codes for this method in
http://sites.stat.psu.edu/~dhunter/code/btmatlab/. The first code of using Bradly-
Terry with MM method is denoted as btmm in Tables 1-6 and in the R code section. The
second code of using Bradly-Terry with quasi-Newton accelerated MM method is denoted as
btgn in Tables 1-6 and in the R code section. The third code of using Bradly-Terry with a

Newton-Raphson method is denoted as btnr in Tables 1-6 and.in the R code section.

Then the following table is the-consistent rate for different & and n:

Table 1: The consistent rates of the 5 methods when 7 = 0.77, my = 0.28, 3 = 0.56, 7, =
0.21, w5 = 0.33, k=5 and €=0.05 for all methods and o=0.05 for the Wald test and the

Generalized Score test:

Here, the result of the ex-

VP Wald.test. .G:S._ test btmm btqn btnr
Sample size
n=100 0.997 0.996 0.682 0.682 0.682
n=200 0.999 0.999 0.814 0.814 0.814
n=300 0.999 0.999 0.879 0.879 0.879
n=500 1 1 0.951 0.951 0.951
n=800 1 1 0.968 0.968 0.968
n=1000 1 1 0.992 0.992 0.992
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Table 2: The consistent rates of the 5 methods when m; = 0.77, m, = 0.28, 73 = 0.56, m, =
0.21, w5 = 0.34, m = 0.43, k=6 and ¢=0.05 for all methods and a=0.05 for the Wald test

and the Generalized Score test:

Method | ol test G.S. test btmm  btqn  binr
Sample size
n=100 0.098 0998 0578 0578 0.578
n=200 0.999 0999  0.796 0.796 0.796
n=300 1 1 0869 0.869 0.869
n=500 | | 0.95 095 095
n=800 1 | 0.9 099 0.99
n=1000 1 10992 0992 0.992

Table 3: The consistentrrates.of the 5 methods whena = 0.77, o= 0.28, 73 = 0.56, 74 =
0.21, 75 = 0.34, g =043, 7, = 0.12, k=7 and €=0.05 for all methoeds and «=0.05 for the
Wald test and the Generalized Score test:

7\ Wald test  G.S.test btmm btqn btnr
Sample size
n=100 0.999 0.999 0.528 0.528 0.528
n=200 0.999 0.999 0.772 0.772 0.772
n=300 1 1 0.865 0.865 0.865
n=500 1 1 0.946 0.946 0.946
n=800 1 1 0.979 0.979 0.979
n=1000 1 1 099 0.99 0.99
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Table 4: The consistent rates of the 5 methods when m; = 0.77, m, = 0.28, 73 = 0.56, w4 =
0.21, 5 = 0.34, g = 0.43, 7, = 0.12, w5 = 0.5, k=8 and ¢=0.05 for all methods and a=0.05
for the Wald test and the Generalized Score test:

Method | ol test G.S. test btmm  btqn  binr
Sample size
n=100 0.099 0998 0355 0.355 0.355
n=200 0.099 0999  0.626 0.626 0.626
n=300 1 1 0796 0796 0.796
n=500 | | 091 091 0091
n=800 1 1. 4.0972 0972 0972
n=1000 1 1. 0.985 0985 0.985

Table 5: The consistentrrates.of the 5 methods whena = 0.77, o= 0.28, 73 = 0.56, 74 =
0.21, 75 = 0.34, g = 043, 7 =0.12, 78 = 0.5, 19 = 0.9, 719 = 0.62, k=10 and ¢=0.05 for
all methods and =0.05 for the Wald test and the Generalized Score test:

7\ Wald test  G.S.test btmm btqn btnr
Sample size
n=100 0.998 0.998 0.251 0.251 0.251
n=200 0.999 0.999 0.524 0.524 0.524
n=300 1 1 0.684 0.684 0.684
n=500 1 1 0.879 0.879 0.879
n=800 1 1 0.957 0.957 0.957
n=1000 1 1 0.985 0.985 0.985

Next, we compare the Wald test and the Generalized Score test for different . Then
the following tables are the consistent rates of the Wald test and the Generalized Score test

for different «:
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Table 6: The consistent rates of the Wald test and the Generalized Score test when m =
0.77, my = 0.28, m3 = 0.56, my = 0.21, 75 = 0.34, k=5 and ¢=0.05:

Sample size
n=100 n=200
Method Wald test G.S. test | Wald test G.S. test

Significant level a

a=0.15 0.984 0.984 0.996 0.996
a=0.1 0.99 0.991 0.997 0.997
a=0.05 0.997 0.996 0.999 0.999
a=0.01 0.999 0999 1 1

Table 7: The consistent rates of the-Wald test and the. Generalized Score test when
0.77, my = 0.28, w3 = 0.56, mg="0.21, 75 = 0.34, g = 0.43, 77 = 0.12, k=7 and ¢=0.05:

Sample size
n=100 n=200
\X'y Wald test G.S. test | Wald test G.S. test
Significant level a
a=0.15 0.992 0.992 0.997 0.997
a=0.1 0.994 0.994 0.997 0.997
a=0.05 0.999 0.999 0.999 0.999
a=0.01 1 1 1 1
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Table 8: The consistent rates of the Wald test and the Generalized Score test when m =
077, Ty = 028, T3 = 056, Ty = 02]_, s = 0347 g = 043, T = 012, s = 05, g =
0.9, m = 0.62, k=10 and ¢=0.05:

Sample size
n=100 n=200
Method Wald test G.S. test | Wald test G.S. test

Significant level «

a=0.15 0.992 0.992 0.998 0.998
a=0.1 0.997 0.998 0.999 0.999
a=0.05 0.998 0998 0.999 0.999
a=0.01 1 1 1 1

According to above results;we-find that consistent rate decreases as the number of
responses increase for the methods with Bradley-Terry model when n is not enough large.
When the sample size is-large, the results of these methods are almost consistent. In com-
paring the Wald test andthe Generalized Score test for different. cv, consistent rate increases
when « decreases. Although‘the consistent rate is.not high for small sample size case, it
still has good result for large sample size case. It reveals that these methods are feasible in

ranking responses when the sample size is not small.

5 R code

These ranking procedures has been written as a package RankResponse for R. RankRe-

sponse is available from the Comprehensive R Archive Network at http://CRAN.R-project.
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org/package=RankResponse, which include code function rank.wald, rank.gs, rank.LR, rank.LN,

rank.L2R, rank.btmm, rank.btqn and rank.btnr.

rank.wald Rank responses based on the Wald test

Description

Rank responses of a single response question or a multiple response question by the Wald
test procedure.
Usage

rank.wald(data,alpha,type=2)

Argument

data A m X numatrix (d;;), where d;; = 0.or 1. If the ith respondent
selects the jth response, then'd;; =1, otherwise dj; = 0.

alpha The significance level used in the Wald test.

type type=1 for a single respense question;

type=2 for a multiple response question.
Value

The rank.wald returns the estimated probabilities of the responses being selected and
the ranks of the responses by the Wald test procedure.
References

Wang, H. (2008). Ranking Responses in Multiple-Choice Questions. Journal of Applied
Statistics, 35, 465-474.

Examples
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## This is an example to rank three responses in a multiple response
## question when the number of respondents is 1000 and the signifi-
#+# cance level is 0.05.In this example,we do not use a real data, but

#+# generate data in the first three lines.

A <-sample(c(0,1),1000,p=c(0.21,0.79),replace=T)

B <-sample(c(0,1),1000,p=c(0.86,0.14),replace=T)

C <-sample(c(0,1),1000,p=c(0.42,0.58),replace=T)

D <-cbind(A,B,C)

data <-matrix(D,nrow=1000,ncol=3)

# or upload the true data

alpha<-0.05

rank.wald(data,alpha,type=2)

rank.gs Rank responses based on the Generalized score test

Description

Rank responses of a single response question or a multiple response question by the
generalized score test procedure.
Usage

rank.gs(data,alpha,type=2)

Argument
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data A m X n matrix (d;;), where d;; = 0 or 1. If the ith respondent

selects the jth response, then d;; = 1, otherwise d;; = 0.
alpha The significance level used in the Generalized score test. Value
type type=l1 for a single response question ;

type=2 for a multiple response question .

The rank.gs returns the estimated probabilities of the responses being selected and the
ranks of the responses by the Generalized score procedure.
References

Wang, H. (2008). Ranking Responses in Multiple-Choice Questions. Journal of Applied
Statistics, 35, 465-474.
Examples

#+# This is an example to rank three responses in a multiple response

## question when the number of respondents is 1000 and the signifi-

#+# cance level is 0.05.In this example,we donot use a real data, but

## generate data in thefirst.three lines.

A <-sample(c(0,1),1000,p=c(0.21,0.79),replace=T)

B <-sample(c(0,1),1000,p=c(0.86,0.14),replace=T)

C <-sample(c(0,1),1000,p=c(0.42,0.58),replace=T)

D <-cbind(A,B,C)

data <-matrix(D,nrow=1000,ncol=3)

# or upload the true data

alpha<-0.05

rank.gs(data,alpha,type=2)
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rank.btmm Rank responses based on the Bradley-Terry model with the

MM method

Description

Adopt the Bradley-Terry model to rank responses in a single response question or in
a multiple response question with the MM method. This method associates each response
with a value v, and use the v value to rank responses.
Usage

rank.btmm(data)

Argument

data A m x n matrix (d;;), where d;; = 0 or 1. If the ith respondent

selects the jth response, then d;; = 1, otherwise d;; = 0.
Value

The rank.btmm returns the associated 4 values in the first line and the ranks ofthe
responses in the second line.
References

Hunter DR (2004). MM algorithms for generalized Bradley-Terry models. The Annals
of Statistics, 32, 384-406.
Examples

#+# This is an example to rank three responses in a multiple response

#+# question when the number of respondents is 1000. In this example,

#+# we do not use a real data, but generate data in the first three lines.

A <-sample(c(0,1),1000,p=c(0.37,0.63),replace=T)
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B <-sample(c(0,1),1000,p=c(0.71,0.29),replace=T)
C <-sample(c(0,1),1000,p=c(0.22,0.78),replace=T)
D <-cbind(A,B,C)

data <-matrix(D,nrow=1000,ncol=3)

# or upload the true data

rank.btmm(data)

rank.btgn Rank responses based on the Bradley-Terry model with the

quasi-Newton accelerated MM method

Description

Adopt the Bradley-Terry model to rank responses in a single response question orin a
multiple response question with quasi-Newton and the MM method. This method associates
each response with a value 7, and use the « value to rank responses.
Usage

rank.btqgn(data)

Argument

data A m X n matrix (d;;), where d;; = 0 or 1. If the sth respondent

selects the jth response, then d;; = 1, otherwise d;; = 0.
Value

The rank.btqn returns the associated v values in the first line and the ranks of the re-
sponses in the second line.

References
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Hunter DR (2004). MM algorithms for generalized Bradley-Terry models. The Annals
of Statistics, 32, 384-406.
Examples
#+# This is an example to rank three responses in a multiple response
#+# question when the number of respondents is 1000. In this example,
## we do not use a real data, but generate data in the first three lines.
A <-sample(c(0,1),1000,p=c(0.37,0.63),replace=T)
B <-sample(c(0,1),1000,p=c(0.71,0.29),replace=T)
C <-sample(c(0,1),1000,p=¢(0.22,0.78),replace=T)
D <-cbind(A,B,C)
data <-matrix(D,nrow=1000,ncol=3)
# or upload the true data

rank.btqn(data)

rank.btnr Rank responses based-on the Bradley-"Terry model with New-

ton Raphson method

Description

Adopt the Bradley-Terry model to rank responses in a single response question or in
a multiple response question with Newton-Raphson method. This method associates each
response with a value v, and use the v value to rank responses.
Usage

rank.btnr (data)
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Argument

data A m x n matrix (d;;), where d;; = 0 or 1. If the ith respondent

selects the jth response, then d;; = 1, otherwise d;; = 0.
Value

The rank.btnr returns the associated v values in the first line and the ranks of the re-
sponses in the second line.
References

Hunter DR (2004). MM algorithms for generalized Bradley-Terry models. The Annals
of Statistics, 32, 384-406.
Examples

## This is an example to rank three responses in a, multiple response

## question when:the number of respondents is 1000. In this example,

## we do not use a real data, but generate data in the first three lines.

A <-sample(c(0,1),1000,p=c(0.37,0.63),replace=T)

B <-sample(c(0,1),1000,p=c(0.71,0.29),replace=T)

C <-sample(c(0,1),1000,p=c(0.22,0:78),replace=T)

D <-cbind(A,B,C)

data <-matrix(D,nrow=1000,ncol=3)

# or upload the true data

rank.btnr(data)

rank.LN Rank responses under the Bayesian framework according to

the loss function Ly(d,n) = cFD + FN
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Description

Rank responses of a single response question or a multiple response question under the

Bayesian framework according to the loss function Ly(d,n) = ¢cFD + FN.

Usage

LN(data,response.number,prior.parameter,c)

Argument

data

response. number

prior.parameter

C
Value

The rank.LN returns the estimated probabilities of the responses being selected in the

A 'm x n matrix (d;; )y where d;; = 0 or 1. If the ith res-
pondent selects the jth response, then d;; = 1, otherwise
d;; = 0

The number of the responses

The parameter vector of the Dirichlet prier distribution,
where the vector«dimension is 2responsgnumber

The value of ¢ in the loss function

first line and the ranks of the responses in the second line.

References

Wang, H. and Huang, W. H. (2014). Bayesian Ranking Responses in Multiple Response

Questions. Journal of the Royal Statistical Society: Series A (Statistics in Society), 177,

191-208.

Examples

##This is an example to rank three responses in a multiple response
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##question when the number of respondents is 1000 and the value c is
#+#1. In this example, we do not use a real data, but generate data in
#+#the first three lines.

A <-sample(c(0,1),1000,p=c(0.37,0.63),replace=T)

B <-sample(c(0,1),1000,p=c(0.71,0.29),replace=T)

C <-sample(c(0,1),1000,p=c(0.22,0.78),replace=T)

D <-cbind(A,B,C)

data <-matrix(D,nrow=1000,ncel=3)

# or upload the true data

response.number <-3

prior.parameter <s¢(5,98,63,7,42,7,7.7)

c <-1

rank.LN(data,response. number,prior.parameter,c)

rank.LR Rank responses under the-Bayesian framework according to

the loss Lr(d,n) = cFDR+ FNR

Description

Rank responses of a single response question or a multiple response question under the
Bayesian framework according to the loss function Lg(d,n) = cFDR + FNR.
Usage

rank.LR(data,response.number,prior.parameter,c)

Argument
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data A m x n matrix (d;;), where d;; = 0 or 1. If the ith res-
pondent selects the jth response, then d;; = 1, otherwise
d;; = 0.

response.number The number of the responses

prior.parameter The parameter vector of the Dirichlet prior distribution,
where the vector dimension is 2response-number

C The value of ¢ in the loss function

Value

The rank.LR returns the‘estimated probabilities of the responses being selected in the
first line and the ranks of the responses in the second line.
References

Wang, H. and Huang, W. H. (2014). Bayesian Ranking Responses in Multiple Response
Questions. Journal of the Royal Statistical Society: Series A (Statistics in Society), 177,
191-208.
Examples

##This is an example to rank three responses in a multiple response

#+#question when the number of respondents is 1000 and the value c is

#+0.33. In this example, we do not use a real data, but generate data

#+#in the first three lines.

A <-sample(c(0,1),1000,p=c(0.37,0.63),replace=T)

B <-sample(c(0,1),1000,p=c(0.71,0.29),replace=T)

C <-sample(c(0,1),1000,p=c(0.22,0.78),replace=T)

D <-chind(A,B,C)
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data <-matrix(D,nrow=1000,ncol=3)
# or upload the true data
response.number <-3

prior.parameter <- ¢(5,98,63,7,42,7,7,7)
¢ <-0.33

rank.LR(data,response.number, prior.parameter,c)

rank.L2R Rank responses. under the Bayesian framework according to

the loss Log(d,n) = (FDR;FNR)

Description

Rank responses of a single response question or a multiple response question under the
Bayesian framework according to, the loss function Log(d,n) = (FDR, FNR).
Usage

rank.L2R(data,response.number;prior.parameter,e)

Argument

data A m x n matrix (d;;), where d;; = 0 or 1. If the ith res-
pondent selects the jth response, then d;; = 1, otherwise
dij - O

response.number The number of the responses
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