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the response ”other” are relatively unimportant for consumers.

Next, we illustrate the ranking rule of the method with Bradley-Terry model. It is easier

than above rule. In this method, we compute all γ values and according to the size of values,

we can obtain an order with descending. Hence, the order is the rank of these responses.

4 Simulation

In this section, a simulation study is conducted to evaluate the performance of these

methods in this section. Because the Bayesian ranking method has prior distribution as-

sumption, it is different from other methods. Hence, we do not discuss Bayesian rank-

ing method in the simulation study. The true rank of these responses is according to

the order of π(j). In this study, we regard two responses have the same rank if |π(i) −

π(j)| ≤ ε where ε is a constant in a tolerance region. We compare the ranks of the 5

methods in terms of consistent rate, which is defined as the proportion that the rank

of these methods and the true rank are consistent for n respondents in 1000 replicates.

For example, let π10000 = 0.032, π01000 = 0.015, π00100 = 0.087, π00010 = 0.061, π00001 =

0.009, π11000 = 0.008, π10100 = 0.0082, π10010 = 0.068, π10001 = 0.002, π01100 = 0.002, π01010 =

0.00005, π01001 = 0.0005, π00110 = 0.0005, π00101 = 0.00006, π00011 = 0.00319 ,others equal to

0.044 and ε = 0.01, resulting π1 = 0.626, π2 = 0.501, π3 = 0.585, π4 = 0.617, π5 = 0.479.

Thus the true is 1 4 3 1 5. We obtain a sample, and use the Wald test to obtain the

rank 1 3 3 1 5. If the rank of each response derived from the the Wald test is smaller
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than the true rank, we call this phenomenon is consistent. Here, the result of the ex-

ample is consistent. The codes to run γ in the Bradley-Terry models can be download

in http://sites.stat.psu.edu/~dhunter/code/btmatlab/. We apply these programs to

rank responses in a multiple response question. Since there are three codes for this method in

http://sites.stat.psu.edu/~dhunter/code/btmatlab/. The first code of using Bradly-

Terry with MM method is denoted as btmm in Tables 1-6 and in the R code section. The

second code of using Bradly-Terry with quasi-Newton accelerated MM method is denoted as

btqn in Tables 1-6 and in the R code section. The third code of using Bradly-Terry with a

Newton-Raphson method is denoted as btnr in Tables 1-6 and in the R code section.

Then the following table is the consistent rate for different k and n:

Table 1: The consistent rates of the 5 methods when π1 = 0.77, π2 = 0.28, π3 = 0.56, π4 =

0.21, π5 = 0.33, k=5 and ε=0.05 for all methods and α=0.05 for the Wald test and the

Generalized Score test:

Sample size

Method
Wald test G.S. test btmm btqn btnr

n=100 0.997 0.996 0.682 0.682 0.682

n=200 0.999 0.999 0.814 0.814 0.814

n=300 0.999 0.999 0.879 0.879 0.879

n=500 1 1 0.951 0.951 0.951

n=800 1 1 0.968 0.968 0.968

n=1000 1 1 0.992 0.992 0.992
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Table 2: The consistent rates of the 5 methods when π1 = 0.77, π2 = 0.28, π3 = 0.56, π4 =

0.21, π5 = 0.34, π6 = 0.43, k=6 and ε=0.05 for all methods and α=0.05 for the Wald test

and the Generalized Score test:

Sample size

Method
Wald test G.S. test btmm btqn btnr

n=100 0.998 0.998 0.578 0.578 0.578

n=200 0.999 0.999 0.796 0.796 0.796

n=300 1 1 0.869 0.869 0.869

n=500 1 1 0.95 0.95 0.95

n=800 1 1 0.99 0.99 0.99

n=1000 1 1 0.992 0.992 0.992

Table 3: The consistent rates of the 5 methods when π1 = 0.77, π2 = 0.28, π3 = 0.56, π4 =

0.21, π5 = 0.34, π6 = 0.43, π7 = 0.12, k=7 and ε=0.05 for all methods and α=0.05 for the

Wald test and the Generalized Score test:

Sample size

Method
Wald test G.S. test btmm btqn btnr

n=100 0.999 0.999 0.528 0.528 0.528

n=200 0.999 0.999 0.772 0.772 0.772

n=300 1 1 0.865 0.865 0.865

n=500 1 1 0.946 0.946 0.946

n=800 1 1 0.979 0.979 0.979

n=1000 1 1 0.99 0.99 0.99
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Table 4: The consistent rates of the 5 methods when π1 = 0.77, π2 = 0.28, π3 = 0.56, π4 =

0.21, π5 = 0.34, π6 = 0.43, π7 = 0.12, π8 = 0.5, k=8 and ε=0.05 for all methods and α=0.05

for the Wald test and the Generalized Score test:

Sample size

Method
Wald test G.S. test btmm btqn btnr

n=100 0.999 0.998 0.355 0.355 0.355

n=200 0.999 0.999 0.626 0.626 0.626

n=300 1 1 0.796 0.796 0.796

n=500 1 1 0.91 0.91 0.91

n=800 1 1 0.972 0.972 0.972

n=1000 1 1 0.985 0.985 0.985

Table 5: The consistent rates of the 5 methods when π1 = 0.77, π2 = 0.28, π3 = 0.56, π4 =

0.21, π5 = 0.34, π6 = 0.43, π7 = 0.12, π8 = 0.5, π9 = 0.9, π10 = 0.62, k=10 and ε=0.05 for

all methods and α=0.05 for the Wald test and the Generalized Score test:

Sample size

Method
Wald test G.S. test btmm btqn btnr

n=100 0.998 0.998 0.251 0.251 0.251

n=200 0.999 0.999 0.524 0.524 0.524

n=300 1 1 0.684 0.684 0.684

n=500 1 1 0.879 0.879 0.879

n=800 1 1 0.957 0.957 0.957

n=1000 1 1 0.985 0.985 0.985

Next, we compare the Wald test and the Generalized Score test for different α. Then

the following tables are the consistent rates of the Wald test and the Generalized Score test

for different α:

16



Table 6: The consistent rates of the Wald test and the Generalized Score test when π1 =

0.77, π2 = 0.28, π3 = 0.56, π4 = 0.21, π5 = 0.34, k=5 and ε=0.05:

Sample size

n=100 n=200

Significant level α

Method
Wald test G.S. test Wald test G.S. test

α=0.15 0.984 0.984 0.996 0.996

α=0.1 0.99 0.991 0.997 0.997

α=0.05 0.997 0.996 0.999 0.999

α=0.01 0.999 0.999 1 1

Table 7: The consistent rates of the Wald test and the Generalized Score test when π1 =

0.77, π2 = 0.28, π3 = 0.56, π4 = 0.21, π5 = 0.34, π6 = 0.43, π7 = 0.12, k=7 and ε=0.05:

Sample size

n=100 n=200

Significant level α

Method
Wald test G.S. test Wald test G.S. test

α=0.15 0.992 0.992 0.997 0.997

α=0.1 0.994 0.994 0.997 0.997

α=0.05 0.999 0.999 0.999 0.999

α=0.01 1 1 1 1
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Table 8: The consistent rates of the Wald test and the Generalized Score test when π1 =

0.77, π2 = 0.28, π3 = 0.56, π4 = 0.21, π5 = 0.34, π6 = 0.43, π7 = 0.12, π8 = 0.5, π9 =

0.9, π10 = 0.62, k=10 and ε=0.05:

Sample size

n=100 n=200

Significant level α

Method
Wald test G.S. test Wald test G.S. test

α=0.15 0.992 0.992 0.998 0.998

α=0.1 0.997 0.998 0.999 0.999

α=0.05 0.998 0.998 0.999 0.999

α=0.01 1 1 1 1

According to above results, we find that consistent rate decreases as the number of

responses increase for the methods with Bradley-Terry model when n is not enough large.

When the sample size is large, the results of these methods are almost consistent. In com-

paring the Wald test and the Generalized Score test for different α, consistent rate increases

when α decreases. Although the consistent rate is not high for small sample size case, it

still has good result for large sample size case. It reveals that these methods are feasible in

ranking responses when the sample size is not small.

5 R code

These ranking procedures has been written as a package RankResponse for R. RankRe-

sponse is available from the Comprehensive R Archive Network at http://CRAN.R-project.
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org/package=RankResponse, which include code function rank.wald, rank.gs, rank.LR, rank.LN,

rank.L2R, rank.btmm, rank.btqn and rank.btnr.

rank.wald Rank responses based on the Wald test

Description

Rank responses of a single response question or a multiple response question by the Wald

test procedure.

Usage

rank.wald(data,alpha,type=2)

Argument

data A m× n matrix (dij), where dij = 0 or 1. If the ith respondent

selects the j th response, then dij = 1, otherwise dij = 0.

alpha The significance level used in the Wald test.

type type=1 for a single response question;

type=2 for a multiple response question.

Value

The rank.wald returns the estimated probabilities of the responses being selected and

the ranks of the responses by the Wald test procedure.

References

Wang, H. (2008). Ranking Responses in Multiple-Choice Questions. Journal of Applied

Statistics, 35, 465-474.

Examples
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## This is an example to rank three responses in a multiple response

## question when the number of respondents is 1000 and the signifi-

## cance level is 0.05.In this example,we do not use a real data, but

## generate data in the first three lines.

A <-sample(c(0,1),1000,p=c(0.21,0.79),replace=T)

B <-sample(c(0,1),1000,p=c(0.86,0.14),replace=T)

C <-sample(c(0,1),1000,p=c(0.42,0.58),replace=T)

D <-cbind(A,B,C)

data <-matrix(D,nrow=1000,ncol=3)

# or upload the true data

alpha<-0.05

rank.wald(data,alpha,type=2)

rank.gs Rank responses based on the Generalized score test

Description

Rank responses of a single response question or a multiple response question by the

generalized score test procedure.

Usage

rank.gs(data,alpha,type=2)

Argument
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data A m× n matrix (dij), where dij = 0 or 1. If the ith respondent

selects the jth response, then dij = 1, otherwise dij = 0.

alpha The significance level used in the Generalized score test.

type type=1 for a single response question ;

type=2 for a multiple response question .

Value

The rank.gs returns the estimated probabilities of the responses being selected and the

ranks of the responses by the Generalized score procedure.

References

Wang, H. (2008). Ranking Responses in Multiple-Choice Questions. Journal of Applied

Statistics, 35, 465-474.

Examples

## This is an example to rank three responses in a multiple response

## question when the number of respondents is 1000 and the signifi-

## cance level is 0.05.In this example,we do not use a real data, but

## generate data in the first three lines.

A <-sample(c(0,1),1000,p=c(0.21,0.79),replace=T)

B <-sample(c(0,1),1000,p=c(0.86,0.14),replace=T)

C <-sample(c(0,1),1000,p=c(0.42,0.58),replace=T)

D <-cbind(A,B,C)

data <-matrix(D,nrow=1000,ncol=3)

# or upload the true data

alpha<-0.05

rank.gs(data,alpha,type=2)
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rank.btmm Rank responses based on the Bradley-Terry model with the

MM method

Description

Adopt the Bradley-Terry model to rank responses in a single response question or in

a multiple response question with the MM method. This method associates each response

with a value γ, and use the γ value to rank responses.

Usage

rank.btmm(data)

Argument

data A m× n matrix (dij), where dij = 0 or 1. If the ith respondent

selects the j th response, then dij = 1, otherwise dij = 0.

Value

The rank.btmm returns the associated γ values in the first line and the ranks ofthe

responses in the second line.

References

Hunter DR (2004). MM algorithms for generalized Bradley-Terry models. The Annals

of Statistics, 32, 384-406.

Examples

## This is an example to rank three responses in a multiple response

## question when the number of respondents is 1000. In this example,

## we do not use a real data, but generate data in the first three lines.

A <-sample(c(0,1),1000,p=c(0.37,0.63),replace=T)
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B <-sample(c(0,1),1000,p=c(0.71,0.29),replace=T)

C <-sample(c(0,1),1000,p=c(0.22,0.78),replace=T)

D <-cbind(A,B,C)

data <-matrix(D,nrow=1000,ncol=3)

# or upload the true data

rank.btmm(data)

rank.btqn Rank responses based on the Bradley-Terry model with the

quasi-Newton accelerated MM method

Description

Adopt the Bradley-Terry model to rank responses in a single response question orin a

multiple response question with quasi-Newton and the MM method. This method associates

each response with a value γ, and use the γ value to rank responses.

Usage

rank.btqn(data)

Argument

data A m× n matrix (dij), where dij = 0 or 1. If the ith respondent

selects the j th response, then dij = 1, otherwise dij = 0.

Value

The rank.btqn returns the associated γ values in the first line and the ranks of the re-

sponses in the second line.

References
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Hunter DR (2004). MM algorithms for generalized Bradley-Terry models. The Annals

of Statistics, 32, 384-406.

Examples

## This is an example to rank three responses in a multiple response

## question when the number of respondents is 1000. In this example,

## we do not use a real data, but generate data in the first three lines.

A <-sample(c(0,1),1000,p=c(0.37,0.63),replace=T)

B <-sample(c(0,1),1000,p=c(0.71,0.29),replace=T)

C <-sample(c(0,1),1000,p=c(0.22,0.78),replace=T)

D <-cbind(A,B,C)

data <-matrix(D,nrow=1000,ncol=3)

# or upload the true data

rank.btqn(data)

rank.btnr Rank responses based on the Bradley-Terry model with New-

ton Raphson method

Description

Adopt the Bradley-Terry model to rank responses in a single response question or in

a multiple response question with Newton-Raphson method. This method associates each

response with a value γ, and use the γ value to rank responses.

Usage

rank.btnr(data)
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Argument

data A m× n matrix (dij), where dij = 0 or 1. If the ith respondent

selects the j th response, then dij = 1, otherwise dij = 0.

Value

The rank.btnr returns the associated γ values in the first line and the ranks of the re-

sponses in the second line.

References

Hunter DR (2004). MM algorithms for generalized Bradley-Terry models. The Annals

of Statistics, 32, 384-406.

Examples

## This is an example to rank three responses in a multiple response

## question when the number of respondents is 1000. In this example,

## we do not use a real data, but generate data in the first three lines.

A <-sample(c(0,1),1000,p=c(0.37,0.63),replace=T)

B <-sample(c(0,1),1000,p=c(0.71,0.29),replace=T)

C <-sample(c(0,1),1000,p=c(0.22,0.78),replace=T)

D <-cbind(A,B,C)

data <-matrix(D,nrow=1000,ncol=3)

# or upload the true data

rank.btnr(data)

rank.LN Rank responses under the Bayesian framework according to

the loss function LN(d, n) = cFD + FN
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Description

Rank responses of a single response question or a multiple response question under the

Bayesian framework according to the loss function LN(d, n) = cFD + FN .

Usage

LN(data,response.number,prior.parameter,c)

Argument

data A m× n matrix (dij), where dij = 0 or 1. If the ith res-

pondent selects the j th response, then dij = 1, otherwise

dij = 0.

response.number The number of the responses

prior.parameter The parameter vector of the Dirichlet prior distribution,

where the vector dimension is 2response.number.

c The value of c in the loss function

Value

The rank.LN returns the estimated probabilities of the responses being selected in the

first line and the ranks of the responses in the second line.

References

Wang, H. and Huang, W. H. (2014). Bayesian Ranking Responses in Multiple Response

Questions. Journal of the Royal Statistical Society: Series A (Statistics in Society), 177,

191-208.

Examples

##This is an example to rank three responses in a multiple response
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##question when the number of respondents is 1000 and the value c is

##1. In this example, we do not use a real data, but generate data in

##the first three lines.

A <-sample(c(0,1),1000,p=c(0.37,0.63),replace=T)

B <-sample(c(0,1),1000,p=c(0.71,0.29),replace=T)

C <-sample(c(0,1),1000,p=c(0.22,0.78),replace=T)

D <-cbind(A,B,C)

data <-matrix(D,nrow=1000,ncol=3)

# or upload the true data

response.number <-3

prior.parameter <- c(5,98,63,7,42,7,7,7)

c <-1

rank.LN(data,response.number,prior.parameter,c)

rank.LR Rank responses under the Bayesian framework according to

the loss LR(d, n) = cFDR + FNR

Description

Rank responses of a single response question or a multiple response question under the

Bayesian framework according to the loss function LR(d, n) = cFDR + FNR.

Usage

rank.LR(data,response.number,prior.parameter,c)

Argument
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data A m× n matrix (dij), where dij = 0 or 1. If the ith res-

pondent selects the j th response, then dij = 1, otherwise

dij = 0.

response.number The number of the responses

prior.parameter The parameter vector of the Dirichlet prior distribution,

where the vector dimension is 2response.number.

c The value of c in the loss function

Value

The rank.LR returns the estimated probabilities of the responses being selected in the

first line and the ranks of the responses in the second line.

References

Wang, H. and Huang, W. H. (2014). Bayesian Ranking Responses in Multiple Response

Questions. Journal of the Royal Statistical Society: Series A (Statistics in Society), 177,

191-208.

Examples

##This is an example to rank three responses in a multiple response

##question when the number of respondents is 1000 and the value c is

##0.33. In this example, we do not use a real data, but generate data

##in the first three lines.

A <-sample(c(0,1),1000,p=c(0.37,0.63),replace=T)

B <-sample(c(0,1),1000,p=c(0.71,0.29),replace=T)

C <-sample(c(0,1),1000,p=c(0.22,0.78),replace=T)

D <-cbind(A,B,C)
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data <-matrix(D,nrow=1000,ncol=3)

# or upload the true data

response.number <-3

prior.parameter <- c(5,98,63,7,42,7,7,7)

c <-0.33

rank.LR(data,response.number,prior.parameter,c)

rank.L2R Rank responses under the Bayesian framework according to

the loss L2R(d, n) = (FDR,FNR)

Description

Rank responses of a single response question or a multiple response question under the

Bayesian framework according to the loss function L2R(d, n) = (FDR,FNR).

Usage

rank.L2R(data,response.number,prior.parameter,e)

Argument

data A m× n matrix (dij), where dij = 0 or 1. If the ith res-

pondent selects the j th response, then dij = 1, otherwise

dij = 0.

response.number The number of the responses
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