Mutually orthogonal hamiltonian connected graphs

Tung-Yang Hoa,*, Cheng-Kuan Linb, Jimmy J.M. Tanb, Lih-Hsing Hsuc

a Department of Information Management, Ta Hwa Institute of Technology, Hsinchu, 30740, Taiwan, ROC
b Department of Computer Science, National Chiao Tung University, Hsinchu, 30010, Taiwan, ROC
c Department of Computer Science and Information Engineering, Providence University, Taichung, 43301, Taiwan, ROC

\textbf{A R T I C L E I N F O}

Article history:
Received 11 June 2007
Received in revised form 6 January 2009
Accepted 6 January 2009

Keywords:
Hamiltonian
Hamiltonian connected
Interconnection networks

\textbf{A B S T R A C T}

In this work, we concentrate on those \(n \)-vertex graphs \(G \) with \(n \geq 4 \) and \(\bar{v} \leq n - 4 \). Let \(P_1 = \langle u_1, u_2, \ldots, u_n \rangle \) and \(P_2 = \langle v_1, v_2, \ldots, v_n \rangle \) be any two hamiltonian paths of \(G \). We say that \(P_1 \) and \(P_2 \) are orthogonal if \(u_1 = v_1, u_n = v_n, \) and \(u_i \neq v_i \) for \(q \in \{2, n - 1\} \). We say that a set of hamiltonian paths \(\{P_1, P_2, \ldots, P_k\} \) of \(G \) are mutually orthogonal if any two distinct paths in the set are orthogonal. We will prove that there are at least two orthogonal hamiltonian paths of \(G \) between any two different vertices. Furthermore, we classify the cases such that there are exactly two orthogonal hamiltonian paths of \(G \) between any two different vertices. Aside from these special cases, there are at least three mutually orthogonal hamiltonian paths of \(G \) between any two different vertices.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In this work, a network is represented as a loopless undirected graph. For graph definitions and notation we follow [1]. \(G = (V, E) \) is a graph if \(V \) is a finite set and \(E \) is a subset of \(\{(u, v) \mid (u, v) \) is an unordered pair of \(V \} \). We say that \(V \) is the vertex set and \(E \) is the edge set. Two vertices \(u \) and \(v \) are adjacent if \(u, v \in E \). Let \(S \) be a subset of \(V \). The subgraph of \(G \) induced by \(S \) is the graph \(G[S] \) with \(V(G[S]) = S \) and \(E(G[S]) = \{(u, v) \mid (u, v) \in E, u, v \in S\} \). The complement \(\bar{G} \) of a graph \(G \) is with the same vertex set \(V(G) \) defined by \(u, v \in E(G) \) if and only if \(u, v \not\in E(G) \). We use \(\bar{E} \) to denote \(|E(G)| \).

The degree of a vertex \(u \) of \(G \), \(\deg_G(u) \), is the number of edges incident with \(u \). A path, \(\langle v_0, v_1, v_2, \ldots, v_k \rangle \), is an ordered list of distinct vertices such that \(v_i \) and \(v_{i+1} \) are adjacent for \(0 \leq i \leq k - 1 \). A path is a hamiltonian path if its vertices are distinct and span \(V \). A graph \(G \) is hamiltonian connected if there exists a hamiltonian path joining any two vertices of \(G \). A cycle, \(\langle v_0, v_1, \ldots, v_k, v_0 \rangle \), is a path with at least three vertices such that the first vertex is the same as the last vertex. A cycle is a hamiltonian cycle if it traverses every vertex of \(G \) exactly once. A graph is hamiltonian if it has a hamiltonian cycle.

Let \(P_1 = \langle u_1, u_2, \ldots, u_n \rangle \) and \(P_2 = \langle v_1, v_2, \ldots, v_n \rangle \) be any two hamiltonian paths of an \(n \)-vertex hamiltonian connected graph \(G \). We say that \(P_1 \) and \(P_2 \) are orthogonal if \(u_1 = v_1, u_n = v_n, \) and \(u_i \neq v_i \) for \(q \in \{2, n - 1\} \). We say that a set of hamiltonian paths \(\{P_1, P_2, \ldots, P_k\} \) of \(G \) are mutually orthogonal if any two distinct paths in the set are orthogonal.

In this work, we concentrate on those \(n \)-vertex graphs \(G \) with \(n \geq 4 \) and \(\bar{v} \leq n - 4 \). By the famous Ore's Theorem [2], \(G \) is hamiltonian connected. Yet, we will prove that there are at least two orthogonal hamiltonian paths of \(G \) between any two different vertices. Furthermore, we classify the cases such that there are exactly two orthogonal hamiltonian paths of \(G \) between any two different vertices. Thus, there are at least three mutually orthogonal hamiltonian paths of \(G \) between any two different vertices except for the cases mentioned above. This result can be used to compute the fault-tolerant hamiltonian connectivity of the WK-recursive networks [3].

* Corresponding author.
E-mail address: hoho@thit.edu.tw (T.-Y. Ho).

0893-9659/$ - see front matter © 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.aml.2009.01.058
2. Mutually orthogonal hamiltonian paths

The following theorem is proved by Ore [2].

Theorem 1 ([2]). Assume that G is an n-vertex graph with $n \geq 4$. Then G is hamiltonian if $\bar{d} \leq n - 3$, and is hamiltonian connected if $\bar{d} \leq n - 4$.

Let G and H be two graphs. We use $G + H$ to denote the disjoint union of G and H. We use $G \vee H$ to denote the graph obtained from $G + H$ by joining each vertex of G to each vertex of H. For $1 \leq m < n/2$, let $C_{m,n}$ be the graph $(K_m + K_{n-2m}) \vee K_m$. See Fig. 1 for an illustration. The following theorem is proved by Chvátal [4].

Theorem 2 ([4]). If G is an n-vertex graph where $n \geq 3$ and $|E(G)| > C_{n-1}^2 + 1$, then G is hamiltonian. Moreover, the only non-hamiltonian graphs with n vertices and $C_{n-1}^2 + 1$ edges are $C_{1,n}$ and, for $n = 5, C_{2,5}$.

Suppose that G is an n-vertex graph with $\bar{d} \leq n - 4$. Assume that $n = 4$. Obviously, G is isomorphic to K_4. It is easy to check that there are exactly two orthogonal hamiltonian paths between any two distinct vertices of G.

Assume that $n = 5$. Obviously, G is isomorphic either to K_5 or to $K_5 - e$ where e is any edge of K_5. We label the vertices of K_5 with $\{1, 2, 3, 4, 5\}$ and we set $e = (1, 2)$. Suppose that G is isomorphic to K_5. It is easy to check that there are exactly three mutually orthogonal hamiltonian paths of G between any two vertices. Suppose that G is isomorphic to $K_5 - (1, 2)$. By brute force, we can check that there are exactly three mutually orthogonal hamiltonian paths between vertices 1 and 2. However, there are exactly two orthogonal hamiltonian paths between the remaining pairs.

Now, we assume that $n \geq 6$. Let s and t be any two distinct vertices of G. Let H be the subgraph of G induced by the remaining $(n - 2)$ vertices of G. We have the following two cases:

Case 1: H is hamiltonian. We can label the vertices of H with $\{0, 1, 2, \ldots, n - 3\}$ such that $\langle 0, 1, 2, \ldots, n - 3, 0 \rangle$ forms a hamiltonian walk in H. We use the notation $[i]$ to denote $i \mod (n - 2)$. Let Q denote the set $\{i \mid (s, [i + 1]) \in E(G) \text{ and } (i, t) \in E(G)\}$. Since $\bar{d} \leq n - 4$, $|Q| \geq n - 2 - (n - 4) = 2$. There are at least two elements q_1, q_2 in Q. We set P_1 as $\langle s, [q_1 + 1], [q_1 + 2], \ldots, [q_1] \rangle$, for $j = 1, 2$. Then P_1 and P_2 are two orthogonal hamiltonian paths between s and t.

Suppose that $\bar{d} \leq n - 5$, $(s, t) \notin E$, or H is not isomorphic to the complete graph K_{n-2}. Then $|Q| \geq 3$. Let $q_1, q_2,$ and q_3 be the three elements in Q. For $j = 1, 2,$ and 3, we set P_1 as $\langle s, [q_j + 1], [q_j + 2], \ldots, [q_j] \rangle$. Then P_1, P_2, and P_3 are three mutually orthogonal hamiltonian paths between s and t.

Thus, we consider $\bar{d} = n - 4$, $(s, t) \in E$, and H is isomorphic to the complete graph K_{n-2}. Let ST be the set of vertices in H that are adjacent to s and t, let S be the set of vertices in H that are adjacent to s but not adjacent to t, let T be the set of vertices in H that are not adjacent to s but adjacent to t, and let ST be the set of vertices in H that are neither adjacent to s nor adjacent to t.

Let $a = |ST|, b = |ST|, c = |ST|, \text{ and } d = |ST|$. Without loss of generality, we assume that $\deg_c(s) \geq \deg_c(t)$. Then $b \geq c, b + c + 2d = n - 4$, and $a + b + c + d = n - 2$. Thus, $a - d = 2$. Hence, $a \geq 2$.

Suppose $a \geq 3$. Let $q_1, q_2,$ and q_3 be three vertices in ST and $q_4, q_5, \ldots, q_{n-2}$ be the remaining vertices of H. We set P_1 as $\langle s, q_1, q_2, X, q_3, t \rangle$, P_2 as $\langle s, q_2, q_3, Y, q_1, t \rangle$, and P_3 as $\langle s, q_3, Z, q_1, q_2, t \rangle$ where $X, Y,$ and Z are any permutations of $q_4, q_5, \ldots, q_{n-2}$. Obviously, $P_1, P_2,$ and P_3 are three mutually orthogonal hamiltonian paths between s and t.

Suppose $a = 2$. Then $d = 0$. Suppose $c \geq 1$. Then $b \geq 1$. We rearrange the vertices of H so that 0 is a vertex in ST, 1 and 2 are the vertices in ST, 3 is a vertex in ST, and 4, 5, $\ldots, n - 3$ are the remaining vertices. Obviously, $\langle 0, 1, 2, \ldots, n - 3, 0 \rangle$ forms a hamiltonian cycle of H. Let Q denote the set $\{i \mid (s, [i]) \in E(G) \text{ and } ([i + 1, t] \in E(G)\}$. Obviously, $|Q| \geq 3$. Thus, there are three mutually orthogonal hamiltonian paths between s and t.

Finally, we consider $a = 2, d = 0, \text{ and } c = 0$. Thus, $b = n - 4$. In this case, s is adjacent to t and all the vertices in H; t is adjacent to s and exactly two vertices in H, say q_1 and q_2. Let $\langle s = v_1, v_2, v_3, \ldots, v_n = t \rangle$ be a hamiltonian path of G between s and t. Obviously, v_{n-1} is either q_1 or q_2. Therefore, there are exactly two orthogonal hamiltonian paths between s and t.

Case 2: H is non-hamiltonian. There are exactly $(n - 2)$ vertices in H. By Theorem 2, there are exactly $(n - 4)$ edges in the complement of H and H is isomorphic to $C_{1,n-2}$ or $C_{2,5}$. Hence, s is adjacent to $V(G) - \{s\}$ and t is adjacent to $V(G) - \{t\}$.

Fig. 1. Illustration of $C_{m,n}$.

We can construct two orthogonal hamiltonian paths of G between s and t as the following cases:

Subcase 2.1: H is isomorphic to $C_{2,5}$. We label the vertices of $C_{2,5}$ with $\{1, 2, 3, 4, 5\}$ as shown in Fig. 2(a). Let $P_1 = (s, 1, 2, 3, 4, 5, t)$ and $P_2 = (s, 3, 4, 5, 2, 1, t)$. Then P_1 and P_2 form the required orthogonal paths. By brute force, we can check that there are exactly two orthogonal hamiltonian paths between s and t.

Subcase 2.2: H is isomorphic to $C_{1,n-2}$. We label the vertices of $C_{1,n-2}$ with $\{1, 2, \ldots, n - 2\}$ as shown in Fig. 2(b). Let $P_1 = (s, 1, 2, 3, \ldots, n - 2, t)$ and $P_2 = (s, 3, 4, \ldots, n - 2, 2, 1, t)$. Then P_1 and P_2 form the orthogonal hamiltonian paths. Let $(s = v_1, v_2, \ldots, v_n = t)$ be any hamiltonian path of G between s and t. Obviously, 1 is either v_2 or v_{n-1}. Therefore, there are exactly two orthogonal hamiltonian paths between s and t.

From the above discussions, we have the following theorem.

Theorem 3. Assume that G is an n-vertex graph with $n \geq 4$ and $\bar{e} \leq n - 4$. Let s and t be any two vertices of G. Then there are at least two orthogonal hamiltonian paths of G between s and t. Moreover, there are at least three mutually orthogonal hamiltonian paths of G between s and t except for the following cases:

1. G is isomorphic to K_4 where s and t are any two vertices of G.
2. G is isomorphic to $K_5 - \{1, 2\}$ where s and t are any two vertices except for $\{s, t\} = \{1, 2\}$.
3. The subgraph H induced by $V(G) - \{s, t\}$ is a complete graph with $n \geq 6$ where s is adjacent to t and all the vertices in H and t is adjacent to s and exactly two vertices in H.
4. The subgraph induced by $V(G) - \{s, t\}$ is isomorphic to $C_{2,5}$ where s is adjacent to $V(G) - \{s\}$ and t is adjacent to $V(G) - \{t\}$.
5. The subgraph induced by $V(G) - \{s, t\}$ is isomorphic to $C_{1,n-2}$ with $n \geq 6$ where s is adjacent to $V(G) - \{s\}$ and t is adjacent to $V(G) - \{t\}$.

References