Contents

Chinese Abstract ... I

English Abstract ... IV

Acknowledges ... VII

Contents ... VIII

Table Captions .. XII

Figure Captions .. XIII

Chapter 1 Introduction

1-1 Introduction ... 1
1-2 Motivation for the study .. 7
1-3 Thesis Organization .. 8

Chapter 2 Literature review

2-1 structure of ferroelectric oxides 10
2-2 The composition of ferroelectrics 12
2-3 Fabrication methods of the ferroelectric thin films 15
2-4 Precursor solution of the ferroelectrics 17
2-5 Annealing atmosphere of the ferroelectrics 23
2-6 Electrodes of the ferroelectric films 25
2-7 Sizes effects and thickness effect 26
2-8 Electrical properties of ferroelectric oxides 27
2-9 Reliability of ferroelectric films 32
Chapter 3 Experimental Details

3-1 Preparation of SBT, BNT, STO, STSO precursor solutions………38
3-2 Preparation of bottom electrodes…………………………………..40
3-3 Formation of SBT, BNT, STO, STSO thin films…………………..41
3-4 X-ray diffraction analysis (XRD)…………………………………..43
3-5 DTA and TG measurements………………………………………..43
3-6 SEM measurement………………………………………………....44
3-7 TEM measurement………………………………………………....44
3-8 AFM measurement………………………………………………….45
3-9 XPS measurement………………………………………………….45
3-10 Polarization measurement…………………………………………45
3-11 Capacitance-Voltage (C-V) measurements……………………..46
3-12 Current-Voltage (I-V) measurements……………………………..47
3-13 Fatigue measurements…………………………………………….47
3-14 Retention measurements…………………………………………48

Chapter 4 Electrical and Physical Properties of Sr$_{0.8}$Bi$_{2+x}$Ta$_2$O$_{9+x}$ Ferroelectric Thin Films

4-1 Introduction…………………………………………………………49
4-2 Experimental………………………………………………………..49
4-3 Result and Discussion………………………………………………51
4-4 Summary……………………………………………………………64

Chapter 5 Electrical and dielectric properties of low-temperature crystallized Sr$_{0.8}$Bi$_{2.6}$Ta$_2$O$_{9+x}$ thin films

5-1 Introduction……………………………………………………………65
Chapter 6 Properties of $\text{Sr}_{0.8}\text{Bi}_{2.6}\text{Ta}_2\text{O}_{9+x}$ ferroelectric thin films with SrTiO_3 seeding layer on MIM and MFIS structure

6-1 Introduction ..80
6-2 Experimental ..82
6-3 Result and Discussion83
6-4 Summary ..97

Chapter 7 Electrical Properties of $\text{Bi}_{3.25}\text{Nd}_{0.75}\text{Ti}_3\text{O}_{12}$ ferroelectric thin films

7-1 Introduction ..99
7-2 Experimental ..100
7-3 Result and Discussion102
7-4 Summary ..112

Chapter 8 Dielectric and Electrical properties of SrTiO_3-$x\text{SiO}_2$ thin film-based MIM capacitors

8-1 Introduction ..114
8-2 Experimental ..116
8-3 Result and Discussion117
8-4 Summary ..135

Chapter 9 Conclusions and Suggestions for Future Work
9-1 Conclusions..137
9-2 Future work..138

Reference...140

Vita...155
Table Captions

Chapter 1
Table 1-1. Comparison of memory IC……………………………………2

Chapter 2
Table 2-1 Thin Film Deposition Techniques……………………………16

Chapter 3
Table 3-1 Calculated XRD data for SBT……………………………44

Chapter 5
Table 5-1 The composition and XRD grain size of SBT thin films
annealed at various temperatures……………………………71
Figure Captions

Chapter 1

Fig. 1-1 Simple model of various FeRAM (a) 1T-1C type FeRAM (b) MFS (c) MFIS (d) MFMIS in FET-type FeRAM, respectively…………………………………………………….3

Chapter 2

Fig. 2-1 The perovskite structure……………………………………………11
Fig. 2-2 The Bi-base layered perovskite structure of SBT (SBN)..............12
Fig. 2-3 The P-E hysteresis curve of SBT(x/y/2)/Pt/Ti and SBT(x/y/2)/Pt/Ta films……………………………………………………………………13
Fig. 2-4 The P-E curve (hysteresis loop) of SBT thin films..............28
Fig. 2-5 Illustration of the polarization reorientation............................29
Fig. 2-6 The four various mechanisms of polarization....................31
Fig. 2-7 A typical P-E hysteresis loop for ferroelectric....................34
Fig. 2-8 Time dependent dielectric breakdown...............................36
Fig. 2-9 The operation of MFMIS FET...37

Chapter 3

Fig. 3-1 The preparation of the precursors solution.........................39
Fig. 3-2 The preparation of SBT thin films...................................42
Fig. 3-3 The schematic circuit of Sawyer-Tower Bridge..................46
Fig. 3-4 Electrical measurement on MIM and MFMIS structure.........47

Chapter 4
Fig. 4-1 DTA and TG curves of the dried powder obtained from the precursor solution……………………………………………...51

Fig. 4-2 XRD patterns of the various bismuth content Sr_{0.8}Bi_{2+x}Ta_{2}O_{9+δ} thin films……………………………………………………52

Fig. 4-3 Lattice constant of Sr_{0.8}Bi_{2+x}Ta_{2}O_{9+δ} films as a function of excess bismuth……………………………………………………53

Fig. 4-4 SEM micrographs for 650 ºC, 30 min sintered Sr_{0.8}Bi_{2+x}Ta_{2}O_{9+δ} thin film with various excess bismuth content indicated………54

Fig. 4-5 Bi XPS signals of SBT films with various excess bismuth contents…………………………………………………………………56

Fig. 4-6 P-E hysteresis loops of 650 ºC, 30 min sintered Sr_{0.8}Bi_{2+x}Ta_{2}O_{9+δ} thin films with varying excess bismuth x…………………57

Fig. 4-7 Leakage current density vs. applied electric field for Sr_{0.8}Bi_{2+x}Ta_{2}O_{9+δ} thin films with various excess bismuth indicates……………………………………………………………………58

Fig. 4-8 Fatigue characteristics of SBT thin films with various excess bismuth contents annealed at 650 ºC under 5V bipolar switching cycles……………………………………………………………………59

Fig. 4-9 (a) The TEM image of SBT thin film with excess bismuth 50% (x=1) (b) EDS spectra acquired from minor second phase (marked as black circle in TEM picture) of SBT thin film…..60

Fig. 4-10 (a) SIMS depth profiles of SBT thin films as-deposited …..61

Fig 4-10 (b) SIMS depth profiles of SBT thin films annealed at 650 ºC for 30 min………………………………………………………………62
Fig 4-10 (c) SIMS depth profiles of SBT thin films annealed at 700 °C for 30 min. ..62
Fig. 4-11 Ln (J/E) is plotted versus E^{1/2} for SBT films with various excess bismuth contents..63
Fig. 4-12 Ln (J/E) is plotted versus E^{1/2} for SBT films with Bi excess x=1. ...64

Chapter 5

Fig. 5-1 (a) TEM cross section micrograph (b) SEM cross section micrographs of SBT thin film annealed at 450 °C and 550 °C, respectively..68
Fig. 5-2 XRD pattern of SBT thin films (a) annealed at various temperatures indicated with 30 kV, 20 mA radiation and (b) annealed at 450 °C with 50 kV, 200 mA radiation..............69
Fig. 5-3 P-E hysteresis loops of SBT thin films annealed at various temperatures...71
Fig. 5-4 Variation of dielectric constant of SBT thin films with annealing temperature. ...72
Fig. 5-5 SIMS depth profiles of SBT thin films annealed at (a) 650 °C , (b) 700 °C for 30 min..75
Fig. 5-6 Curves of leakage current density vs. applied electric field for SBT thin films annealed at various temperatures indicated……76
Fig. 5-7 Variation of surface roughness and leakage current density at 100
kV/cm of SBT thin films with annealing temperature………77

Fig. 5-8 Fatigue characteristics of SBT thin films annealed at 650 and 700 °C under 5V bipolar switching cycles………………..78

Chapter 6

Fig. 6-1 XRD pattern of SBT thin films on Ir/SiO₂/Si substrate annealed at various temperatures……………………………………..84

Fig. 6-2 XRD pattern of SBT thin films on STO/Ir/SiO₂/Si substrate annealed at various temperatures……………………………85

Fig. 6-3 XRD pattern of SBT thin films deposited on (a) CeO₂/Si substrate and (b) with STO seeding layer annealed at 700 °C …86

Fig. 6-4 SEM micrograph of SBT thin film (a) without STO seeding layer (b) with STO seeding layer on MFIS structure annealed at 700 °C …………………………………………………..87

Fig. 6-5 SEM cross section micrographs of SBT thin film (a) without STO seeding layer (b) with STO seeding layer on MFIS structure annealed at 700 °C …………………………………………………..87

Fig. 6-6 P-E hysteresis loops of SBT thin films without STO seeding layer on MIM structure annealed at 650 °C and 700 °C ………….89

Fig. 6-7 P-E hysteresis loops of SBT thin films with STO seeding layer on MIM structure annealed at various temperatures………..91

Fig. 6-8 C-V characteristic of the SBT thin films (a) without seeding layer and (b) with seeding layer on MFIS structure annealed at 700 °C …………………………………………………..92
Fig. 6-9 The leakage current density of the SBT thin films on MIM structure (a) without seeding layer (b) with seeding layer annealed at various temperatures, respectively..................94

Fig. 6-10 The leakage current density of the SBT thin films on MFIS structure (a) without seeding layer (b) with seeding layer annealed at 700 ℃ ...95

Fig. 6-11 Retention characteristics of SBT thin film in the MFIS structure with STO and without STO seeding layer annealed at 700 ℃ ..97

Chapter 7

Fig. 7-1 XRD pattern of BTN thin films annealed at various temperatures. ..103

Fig. 7-2 SEM surface and cross section images of BNT thin film annealed at various temperature...104

Fig. 7-3 P-E hysteresis loops of BNT thin films annealed at 650 ℃ and 700 ℃ ..105

Fig. 7-4 Curves of leakage current density vs. applied electric field for BNT thin films annealed at 650 ℃ and 700 ℃106

Fig. 7-5 Fatigue characteristics of BNT thin films annealed at 700 ℃ under 5V bipolar switching cycles.................................107

Fig. 7-6 C-V characteristics of BNT thin film for Pt/BNT/Pt/Ti/SiO₂/Si (MFMIS) structure...108

Fig. 7-7 C-V characteristics of BNT thin film for
Pt/BNT/\(\text{CeO}_2/\text{Pt/Ti/SiO}_2/\text{Si}\) (MFMIS) structure………………..109

Fig.7-8 Relationship between MFM area-to-MIS area ratio and memory window……………………………………………………………………………….111

Fig.7-9 Retention characteristics of BNT thin film in the MFMIS structure…………………………………………………………………………….112

Chapter 8

Fig.8-1 XRD pattern of \(\text{SrTiO}_3\) thin films annealed at various temperatures…………………………………………………………………………..119

Fig.8-2 XRD patterns of \(\text{SrTiSi}_x\text{O}_{3+2y}\) thin films with various Si content as deposited at 400 \(\degree\)C …………………………………..119

Fig.8-3 XRD patterns of \(\text{SrTiSi}_x\text{O}_{3+2y}\) thin films with (a) \(x=0.25\) and (b) \(x=0.45\) as deposited at 400 \(\degree\)C and annealed at various temperatures……………………………………………………………………..120

Fig.8-4(a) TEM electron diffraction pattern and (b) TEM micrograph of \(\text{SrTiO}_3\) thin films annealed at 800 \(\degree\)C ……………………………122

Fig.8-4(c) TEM electron diffraction pattern and (d) micrograph of \(\text{SrTiSi}_x\text{O}_{3+2y}\) thin film with \(x=0.25\) annealed at 800 \(\degree\)C ………..123

Fig.8-5 SEM micrographs of surface morphology of \(\text{SrTiO}_3\) thin films (a) deposited at 400 \(\degree\)C and (b) annealed at 800 \(\degree\)C …………………124

Fig.8-6 Surface and cross section SEM micrographs of \(\text{SrTiSi}_x\text{O}_{3+2y}\) thin film with \(x=0.25\) (a) deposited at 400 \(\degree\)C and (b), (c) annealed at 800 \(\degree\)C …………………………………………………………………………………125
Fig. 8-7 Dielectric constant at zero bias versus SiO₂ mole ratio of SrTiSiₓO₃₊δ thin film annealed at various temperatures indicated, the dash line and solid line was fitted with SiO₂ as dispersion phase by equation (1) and (2), respectively. 126

Fig. 8-8 Capacitance vs. applied voltage for SrTiO₃ thin film as deposited at 400 °C and annealed at various temperatures indicated. 129

Fig. 8-9 Capacitance with applied voltage for SrTiSiₓO₃±2y thin film with x=0.25 annealed at various temperatures indicated. 130

Fig. 8-10 Leakage current density of 100 kV/cm electric field vs. SiO₂ mol ratio of SrTiSiₓO₃±2y thin films annealed at various temperatures indicated. 132

Fig. 8-11 XPS spectrum of the Si 2p 3/2 for the SrTiO₃ thin film with x=0.25 deposited at 400 °C and annealed at 800 °C. 133

Fig. 8-12 Curves of leakage current density vs. applied voltage for SrTiSiₓO₃±2y thin film with x=0.25 annealed at various temperatures indicated. 134

Fig. 8-13 Time-dependent dielectric breakdown for SrTiSiₓO₃±2y thin film with x=0.25 annealed at 700 and 800 °C. 135