Contents

Abstract (Chinese) ...i
Abstract (English) ...ii
Contents ...iii
Table Captions ..vii
Figure Captions ..ix

Chapter 1 Introduction ...1
 1-1 Basic Properties of Zinc Oxide1
 1-2 Transparent Thin Film Transistor2
 1-3 Binary Compound TCO Materials3
 1-4 Applications of Transparent Conducting Oxide4
 1-5 Motivation ..5
 1-6 Thesis Organization ..5

Chapter 2 Material Properties of ZnO thin films7
 2-1 Introduction ...7
 2-2 Fabrication Techniques for ZnO Thin Films7
3-3.2.3 Film Preparation ...18

3-4 Characterization of Deposited Layers18

3-4.1 Introduction ..18

3-4.2 Film Thickness ..19

3-4.3 Four-Point Probe ...19

3-4.4 Optical Properties ...20

3-4.5 Structural Characterization ..21

3-4.5.1 X-ray Diffraction (XRD)21

3-4.5.2 Scanning Electron Microscopy (SEM)22

Chapter 4 Results and Discussion23

4-1 Introduction ..23

4-2 Effect of Argon Pressure ...23

4-3 Effect of RF Power ..25

4-4 Effect of Substrate Temperature26

4-4.1 Growth Rate ..26

4-4.2 Physical Properties ..27

4-4.3 Electrical Properties ...28

4-5 Effect of Al Content on AZO Films28
Chapter 5 Conclusion ..38

References ..40

Vita (Chinese) ...74
Table Captions

Table 4-1 Growth rate and resistivity of the various working pressure deposited AZO films.

Table 4-2 FWHM, average grain size, and resistivity of the 1200Å AZO films deposited at various working using 2wt% Al$_2$O$_3$ target and RF power = 50W.

Table 4-3 FWHM, average grain size, and resistivity of the 1600Å AZO films deposited at various RF power using 2wt% Al$_2$O$_3$ target.

Table 4-4 Peak position of the AZO films deposited at RF power = 80W using various substrate temperature and Al$_2$O$_3$ content of target.

Table 4-5 FWHM and grain size of the AZO films deposited at RF power = 80W using various substrate temperature and Al$_2$O$_3$ content of target.

Table 4-6 Resistivity of the AZO films deposited at RF power = 80W and 1 hour of deposition time using various substrate temperature and Al$_2$O$_3$ content of target.

Table 4-7 The dependence of growth rate and Al$_2$O$_3$ content of target of the AZO films deposited at Pw = 2.5mTorr, Prf = 80W and Ts = R.T.

Table 4-8 The crystallinity parameters extracted from the XRD patterns of ~ 4000Å AZO films deposited by various Al$_2$O$_3$ content of target.

Table 4-9 Resistivity of the AZO films with different film thickness deposited at RF power = 80W using various Al$_2$O$_3$ content of target.
Table 4-10 The crystallinity parameters and resistivity of the AZO films with different film thickness deposited at RF power = 80W using 2wt% Al₂O₃ target.

Table 4-11 Resistivity of the AZO films deposited at RF power = 80W and O₂/Ar = 10% using different Al₂O₃ content of target.

Table 4-12 Optimum deposition parameters for the sputtered-deposited AZO films in this thesis.
Figure Captions

Fig. 1-1 Hexagonal wurtzite structure of zinc oxide.

Fig. 1-2 ZnO-based Transparent Thin Film Transistor.

Fig. 4-1 The dependence of growth rate and working pressure (RF power = 80W).

Fig. 4-3 The dependence of resistivity and working pressure (2wt% target, RF power = 80W)

Fig. 4-4-1 SEM image of the 2wt% grown AZO film at Pw = 2.5mTorr.

Fig. 4-4-2 SEM image of the 2wt% grown AZO film at Pw = 5mTorr.

Fig. 4-4-3 SEM image of the 2wt% grown AZO film at Pw = 10mTorr.

Fig. 4-4-4 XRD patterns of AZO films prepared by various working pressure. (2wt% target)

Fig. 4-5 The independence of growth rate and RF power. (2wt% target, Pw = 2.5mTorr)

Fig. 4-6-1 SEM image of the 2wt% grown AZO film at Prf = 50W.

Fig. 4-6-2 SEM image of the 2wt% grown AZO film at Prf = 80W.

Fig. 4-6-3 SEM image of the 2wt% grown AZO film at Prf = 100W.

Fig. 4-7-1 The XRD pattern of the 2wt% grown AZO film at Prf = 50W.

Fig. 4-7-2 The XRD pattern of the 2wt% grown AZO film at Prf = 80W.

Fig. 4-7-3 The XRD pattern of the 2wt% grown AZO film at Prf = 100W.

Fig. 4-8 The optical transmittance of 2wt% grown AZO films prepared by different RF power.

Fig. 4-9 The dependence of growth rate and substrate temperature. (2wt% target, Pw = 2.5
mTorr, Prf = 80W)

Fig. 4-10-1 SEM image of the 0.5wt% grown AZO film at Ts = R.T..

Fig. 4-10-2 SEM image of the 0.5wt% grown AZO film at Ts = 150℃.

Fig. 4-10-3 SEM image of the 0.5wt% grown AZO film at Ts = 250℃.

Fig. 4-11-1 SEM image of the 1wt% grown AZO film at Ts = R.T..

Fig. 4-11-2 SEM image of the 1wt% grown AZO film at Ts = 150℃.

Fig. 4-11-3 SEM image of the 1wt% grown AZO film at Ts = 250℃.

Fig. 4-12-1 SEM image of the 2wt% grown AZO film at Ts = R.T..

Fig. 4-12-2 SEM image of the 2wt% grown AZO film at Ts = 150℃.

Fig. 4-12-3 SEM image of the 2wt% grown AZO film at Ts = 250℃.

Fig. 4-13-1 SEM image of the 4wt% grown AZO film at Ts = R.T..

Fig. 4-13-2 SEM image of the 4wt% grown AZO film at Ts = 150℃.

Fig. 4-14-1 The XRD pattern of the 2wt% grown AZO film at Ts = R.T..

Fig. 4-14-2 The XRD pattern of the 2wt% grown AZO film at Ts = 150℃.

Fig. 4-14-3 The XRD pattern of the 2wt% grown AZO film at Ts = 250℃.

Fig. 4-15-1 SEM image of the 4000Å undoped ZnO film. (Prf = 80W, Pw = 2.5mTorr)

Fig. 4-15-2 SEM image of the 4000Å 0.5wt% grown ZnO film. (Prf = 80W, Pw = 2.5mTorr)

Fig. 4-15-3 SEM image of the 4000Å 1wt% grown ZnO film. (Prf = 80W, Pw = 2.5mTorr)

Fig. 4-15-4 SEM image of the 4000Å 2wt% grown ZnO film. (Prf = 80W, Pw = 2.5mTorr)
Fig. 4-15-5 SEM image of the 4000Å 4wt% grown ZnO film. (Prf = 80W, Pw = 2.5mTorr)

Fig. 4-16 XRD patterns of the 4000Å AZO films prepared by different Al$_2$O$_3$ content of target at Prf = 80W and Pw = 2.5mTorr.

Fig. 4-17 Peak position and FWHM of the 4000Å AZO films prepared by different Al$_2$O$_3$ content of target at Prf = 80W and Pw = 2.5mTorr.

Fig. 4-18 The dependence of resistivity and Al$_2$O$_3$ content of target for 4000Å AZO films.

Fig. 4-19 The dependence of resistivity and film thickness for 2wt% grown AZO films.

Fig. 4-20 The optical transmittance of Corning 1737F glass substrate.

Fig. 4-21 The optical transmittance of the 4000Å AZO films prepared by different wt% target.

Fig. 4-22 The optical bandgap of the 4000Å AZO films prepared by different wt% target.

Fig. 4-23-1 The optical transmittance of 0.5wt% grown AZO films prepared by different substrate temperature.

Fig. 4-23-2 The optical transmittance of 1wt% grown AZO films prepared by different substrate temperature.

Fig. 4-23-3 The optical transmittance of 2wt% grown AZO films prepared by different substrate temperature.

Fig. 4-24 The XRD pattern of 2wt% grown AZO films at Ar/O$_2$ = 10%.

Fig. 4-25 The optical transmittance of the AZO films prepared by different Al$_2$O$_3$ content of target at O$_2$/Ar = 10%.
Fig. 4-26-1 The optical transmittance of 0.5wt% grown AZO films at $O_2/Ar = 0\%$ and 10%.

Fig. 4-26-2 The optical transmittance of 1wt% grown AZO films at $O_2/Ar = 0\%$ and 10%.

Fig. 4-26-3 The optical transmittance of 2wt% grown AZO films at $O_2/Ar = 0\%$ and 10%.

Fig. 4-26-4 The optical transmittance of 4wt% grown AZO films at $O_2/Ar = 0\%$ and 10%.