Input Impedance Characteristics of Coaxial Slot Antennas for Interstitial Microwave Hyperthermia

David W.-F. Su and Lin-Kun Wu, Member, IEEE

Abstract—In this paper, a transmission-line type of input impedance model originally developed by King et al. [4] for the insulated dipole antenna embedded in a homogeneous dissipative medium is extended to the case of insulated coaxial slot antenna. Physical construction of the latter indicates the presence of additional current path(s) inside the feed line, which shall lead to the shortening of its resonance length. This effect is taken into account in the impedance model and verified by experiments. Furthermore, a simple strategy for optimizing the applicator’s impedance-matching performance is also described and verified. Excellent agreements observed between theoretical and measured data indicate that these models can be relied upon when designing an efficient applicator for interstitial microwave hyperthermia.

Index Terms—Input impedance, insulated dipole antenna, insulated coaxial slot antenna, interstitial microwave hyperthermia.

I. INTRODUCTION

INSULATED dipole antennas (IDA’s) are widely used as applicators in the interstitial microwave hyperthermia for treating deep-seated tumors and benign prostatic hyperplasia [1]–[3]. Electrical performance of the applicator is determined by both the degree of impedance matching and specific absorption rate (SAR) distribution in the surrounding tissue. Since tens of watts of microwave power is usually employed for raising tissue temperature to the hyperthermia level of 41 °C–50 °C, good impedance matching is necessary. In fact, determination of an antenna’s input impedance represents the first step in designing the applicator. Once the materials to be used for the construction of antenna and insulation (i.e., catheter) are decided, impedance modeling process results in the length and current distribution characteristics of the applicator, which are then used in a field prediction process to determine the SAR distribution in the surrounding tissue.

Theoretical modeling of the characteristics of an IDA embedded in a homogeneous conductive medium was first undertaken by King et al. [4]. In [4], a center-fed uniformly insulated dipole was considered. An approximate transmission-line model was employed to predict an applicator’s input impedance. In this model, the dipole was first treated as a lossy coaxial transmission line consisting of a two-layer insulation and a lossy outer conductor (i.e., the surrounding lossy tissue). Formulas for the calculation of a complex propagation constant and characteristic impedance for the dominant-mode current propagating along the lossy transmission line of infinite length were then derived. Finally, by considering each of the two arms of the dipole as a finite-length open-circuit terminated transmission line, a simple formula for the prediction of the input impedance of the antenna was derived. This approach was later extended to the cases of dipole with three-layer insulation [5], multisectioned dipoles [6], [7], and an asymmetrically fed dipole [8].

As was pointed out by Hurter et al. [9], heating performance of the conventional IDA’s (see, e.g., the actual antenna structures constructed and tested in [4], [5], [7], and [8]) was insertion-depth dependent. This was due to the presence of a current that flowed backward in the direction toward the generator along the outer conductor of the feeding line. With an insufficient insertion depth, as was reported by Zhang et al. [8] and Hurter et al. [9], reflection from the air–tissue interface also affects the impedance-matching performance of the dipole. In [9], Hurter et al. described the use of a quarter-wavelength sleeve (which is also commonly referred to as “choke”), which, with a short-circuit termination, presented an open-circuit input impedance to terminate the above-mentioned back-flow current.

While conventional insulated dipoles were usually made from coaxial cable, a triaxial cable was employed in [9] to facilitate a simple way of constructing both the choke and the radiating part of the antenna; the structural geometry of which is depicted here as a special case to the generalized insulated antenna structure shown in Fig. 1. It is noted that a triaxial cable consists of three coaxial conductors, its center and inner conductors form an inner coaxial cable, while inner and outer conductors form an outer coaxial cable; the two coaxial cables usually have different characteristic impedances.

In this research, the method of analysis developed by King et al. in [4] is extended further to model the input impedance characteristics of a coaxial slot antenna (CSA) type of insulated applicator. Specifically, two CSA’s, both constructed from triaxial cable, are considered. For convenience, the three antennas will be denoted hereafter as IDA, CSA-I, and CSA-II, respectively. A generalized representation of the structural
SU AND WU: INPUT IMPEDANCE CHARACTERISTICS FOR CSA'S FOR INTERSTITIAL MICROWAVE HYPERThERMA

Fig. 1. Generalized geometry of IDA, CSA-I, and CSA-II antennas.

details associated with all three antennas is depicted in Fig. 1, the differences among them occur on the two sides of the feed gap. For the IDA investigated in [9], the inner and outer coaxial cables associated with section A are both short circuited (i.e., connecting them along S1 and S2) while the outer coaxial cable of section B is also shorted (i.e., S3 is connected). In contrast, short-circuit connections are made only over S2 and S3, but not S1 for CSA-I antenna. In doing so, CSA-I sees an additional impedance loading presented by the short-circuited inner coaxial cable of length h_A, which is not present in the IDA. Aside from this, both antenna structures share the same section B (which is formed by connecting the inner and outer conductors of the triaxial cable at both ends) and choke (which is simply a quarter-wavelength section of the short-circuited outer coaxial cable).

As will be shown in Section III, the short-circuited inner coaxial feed line found in CSA-I represents an extra current path, which results in a reduction of the resonant length of the antenna; this, as will be described in a separate paper, further affects the heating performance of the CSA’s. This length-reduction feature is exploited further by the CSA-II antenna. As oppose to IDA and CSA-I, S1, S2, and S3 are left unconnected for the CSA-II antenna to obtain additional internal current paths.

In Section II, approximate transmission-line types of the impedance model are derived for the three antennas shown in Fig. 1. These models are then used to determine each antenna’s structural parameters for theoretically yielding a better than -10 dB of S_{11} at the industrial, scientific, and medical (ISM) frequency of 915 MHz. Corresponding antennas are then constructed and tested, with theoretical and experimental results presented and compared in Section III. Concluding remarks are presented in Section IV.

II. METHOD OF ANALYSIS

A. IDA

According to the theory of insulated antenna in a conducting or lossy dielectric medium developed by King et al. [4], design and analysis of these antennas in conductive media may be proceeded by first treating the two radiating portions of the antenna as finite-length lossy transmission lines, the input impedances of which are denoted as Z_{inA} and Z_{inB}, respectively. These, for the generalized equivalent circuits shown in Fig. 2, which are applicable to all three antennas investigated here, are obtained by simply setting Z_{inA} and Z_{inB} to zero. According to King [10], the gap capacitance Z_{gap} may be ignored such that the input impedance of the antenna appearing across the terminals $f - f'$ can be approximated as

$$Z_{in} = Z_{fB} \approx Z_{inA} + Z_{inB}$$ (1)

where Z_{inA} and Z_{inB} are given by

$$Z_{inA} = -jZ_c \tan(k_L h_A)$$ (2a)

$$Z_{inB} = \frac{Z_{chke} + jZ_c \tan(k_L h_B)}{Z_c + jZ_{chke} \tan(k_L h_B)}.$$ (2b)

The complex wavenumber $k_L = \sqrt{\beta_L - j \omega L}$ and the characteristic impedance of the lossy transmission line Z_c appearing in (2) are given by [4]

$$k_L = k_0 \left[\frac{\ln(d/b)}{\ln(c/b) + \sqrt{\frac{n_{23}^2}{n_{24}^2}} \ln(d/c)} \right]^{1/2} \left[\frac{\ln(d/b) + F}{\ln(d/b) + n_{24}^2 F} \right]^{1/2}$$

$$Z_c = (\omega \mu_0 k_0/2 \pi \delta) \left[\ln(c/b) + \frac{n_{23}^2}{n_{24}^2} \ln(d/c) + n_{23}^2 F \right]$$ (3)

where $n_{23}^2 = \frac{k_0^2}{k_0}, n_{24}^2 = \frac{k_0^2}{k_1}, k_0 = \frac{k_0}{k_1}$, and $F = H_0(\xi) / k_0$. The total impedance of the choke (Z_{chke}) is defined as

$$Z_{chke} = Z_c + jZ_{chke} \tan(\beta_2 h_c)$$ (5)

where Z_{chke} and β_2 represent the TEM mode characteristic impedance and propagation constant of the outer coaxial cable, respectively. It is observed that Z_{chke} is assumed to be equal to the series combination of the input impedances of the short-circuited transmission line interior to the choke and the lossy transmission line exterior to the choke which, for simplicity, is assumed to be infinitely long such that its input impedance is the same as its characteristic impedance Z_c.

As a choke, h_c is chosen to be a quarter-wavelength long at the desired operating frequency of 915 MHz, which results in an infinite value for Z_{chke}. As a consequence, Z_{inB} reduces to the same form as Z_{inA} in (2a) (with h_A replaced by h_B).
When designing a symmetrical IDA, \(h_A (= h_B) \) is chosen to be near a quarter-wavelength long to yield near pure real \(Z_{\text{in}A} (Z_{\text{in}B}) \) and \(Z_{\text{in}} \) at 915 MHz. Alternatively, one may employ an asymmetrical IDA with proper combination of \(h_A \) and \(h_B \) to achieve better impedance matching and/or SAR characteristics.

B. Insulated CSA-I

For a CSA-I antenna, the feed current will travel first into the short-circuited transmission line in the feed cable before reaching the exterior radiating portion of section \(A \) of the antenna. The effect of this extra current path can be accounted for in the generalized equivalent circuit of Fig. 2 by keeping \(Z_{\text{in}A} \) while setting \(Z_{\text{in}B} \) to zero. As a consequence, \(Z_{\text{in}A} \) given in (2a) should be modified to include an additional series term (i.e., \(Z_{\text{in}A} \)) corresponding to the input impedance of the internal short-circuited feed line. Given this, the input impedance of CSA-I antenna can be written as

\[
Z_{\text{in}} = Z_{\text{in}A} + Z_{\text{in}B}
\]

where the modified impedance \(Z'_{\text{in}A} \) is defined as

\[
Z'_{\text{in}A} = Z_{\text{in}A} + Z_{\text{in}A}.
\]

In (7), \(Z_{\text{in}A} \) represents the above-mentioned loading effect and can be easily determined by the transmission-line theory as

\[
Z_{\text{in}A} = jZ_{\text{in}}\tan(\beta_{\text{in}}h_A).
\]

It is important to observe that \(\beta_{\text{in}} \) is strongly influenced by \(k_{\text{in}} \), while \(\beta_{\text{in}} \) is determined by the cable insulation. With \(k_{\text{in}} \) of the antenna surrounded by a thin catheter and highly lossy human tissue, \(\beta_{\text{in}} \) is much larger then \(\beta_{\text{in}} \), which points out that \(\lambda_{\text{in}} \approx 2\pi/\beta_{\text{in}} \) is much smaller than \(\lambda_{\text{in}} \approx 2\pi/\beta_{\text{in}} \). It then follows that for a CSA-I antenna, one may choose \(h_A \) (and/or \(h_B \)) to be shorter than \(\lambda_{\text{in}}/4 \) such that \(Z_{\text{in}A} \) (and/or \(Z_{\text{in}B} \)) possesses a capacitive reactance which is compensated by the pure inductive \(Z_{\text{in}A} \) (since \(h_A \approx \lambda_{\text{in}}/4 \)) to yield a purely real \(Z_{\text{in}} \) operating frequency.

The above observation indicates that the presence of the extra current path in the inner coaxial feed line may lead to a reduction in the resonant length (i.e., \(h_A + h_B \)) of the antenna. This attribute can be very attractive when designing interstitial applicator for operation at lower ISM frequencies (e.g., 433 MHz), as its use may make it possible for the length of the applicator to match the longitudinal extent of solid tumors or prostate to be heated. This feature is exploited further in Section II-C.

C. Insulated CSA-II

Following the above observation, one may introduce additional current path inside the feed line to further reduce the radiating length of the antenna. For the triaxial cable used here, CSA-I antenna employs only the extra current path available in the inner coaxial cable. It is then obvious that by simply leaving the inner and outer conductors of the triaxial cable unconnected at the near end of either section \(A \) or \(B \), or both, one or two more extra internal current path(s) become available, which should lead to the possibility of further reduction in the radiating length of the antenna. As the extreme case, both current paths are employed here for the CSA-II structure.

Following the above analysis, the equivalent circuit for CSA-II is obtained by retaining both \(Z_{\text{in}A} \) and \(Z_{\text{in}B} \) shown in Fig. 2, from which its input impedance can be written as

\[
Z_{\text{in}} = Z'_{\text{in}A} + Z'_{\text{in}B}
\]

where \(Z'_{\text{in}A} \) and \(Z'_{\text{in}B} \) are then given by

\[
Z'_{\text{in}A} = Z_{\text{in}A} + Z_{\text{in}A}
\]

\[
Z'_{\text{in}B} = Z_{\text{in}B} + Z_{\text{in}B}
\]

with

\[
Z_{\text{in}A} = jZ_{\text{in}}\tan(\beta_{\text{in}}h_A) + jZ_{\text{in}}\tan(\beta_{\text{in}}h_B)
\]

\[
Z_{\text{in}B} = jZ_{\text{in}}\tan(\beta_{\text{in}}h_B).
\]

It is obvious that with

\[
h_A = h_B < \lambda_{\text{in}}/4 \quad \lambda_{\text{in}}/4 \quad \text{and} \quad \lambda_{\text{in}}/4
\]

\(Z_{\text{in}A} \) and \(Z_{\text{in}B} \) are both purely inductive, while \(Z_{\text{in}A} \) and \(Z_{\text{in}B} \) both possess capacitive reactance. With proper combination of \(h_A \) and \(h_B \), the CSA-II antenna can resonate (i.e., with pure real \(Z_{\text{in}} \)) at a much shorter length than both CSA-I and IDA antennas.

III. RESULTS

In order to verify the accuracy of impedance models, theoretically calculated \(S_{11} \) data are compared with experimental data measured with an HP8720 vector network analyzer. Antennas are constructed with the UT 78-50-25 triaxial cable from UTI (Micro-Coax Components, Collegeville, PA.), the outer diameter of its outer conductor (i.e., \(2b \) in Fig. 1) is 1.99 mm. All antennas are insulated by the same PTFE (Teflon) catheters with 2.0-mm inner diameter (i.e., \(2c \)) and 3.2-mm outer diameter (i.e., \(2d \)). They are then inserted through a predrilled hole into a solid muscle-equivalent phantom, which consists of 58.33% ethanol, 36.67% H₂O, 1.67% NaCl, and 3.33% agar (weight percents). The dielectric properties of solid phantom, as revealed by the solid curves in Fig. 3, are measured by the HP85010 dielectric constant measurement system and are consistent with the experimental data (\(
\epsilon' = 46 \pm 53 \) and \(
\epsilon'' = 19 \pm 25 \), around 915 MHz) reported in [11]. These data are smoothed, as shown by the dotted curves in Fig. 3, before being used in the impedance models. In the following, the above structural and material parameters are fixed; \(h_A \) and \(h_B \) are then selected to yield a better than \(-10 \) dB return loss at 915 MHz for each individual antenna design.

The first set of design example is intended for the demonstration of the loading effect of the internal short-circuited line on the antenna’s resonant frequency and/or resonant length. In this case, IDA and CSA-I antennas are considered. Theoretical
calculations indicate that, with $h_A = 20$ mm and $h_B = 45$ mm, both antennas exhibit better than -10-dB return loss at 915 MHz. The calculated and measured frequency responses of the return loss for IDA and CSA-I are shown in Figs. 4 and 5, respectively. The calculated and measured resonant frequencies are 880 and 905 MHz, respectively, for IDA, and 840 and 855 MHz, respectively, for CSA-I. In all cases, $|S_{11}| < -10$ dB are observed at the desired operating frequency of 915 MHz. The lower resonant frequency observed for CSA-I clearly indicates that, to raise its resonant frequency to near that of the IDA (or to 915 MHz), shorter h_A and/or h_B should be used. This resonant length reduction capability is obviously afforded by the presence of the extra current path inside the coaxial feed line.

The SAR patterns associated with those two antennas are also measured at 915 MHz and displayed in Fig. 6. Since fields radiated by these antennas are governed by the normalized current distributions present on the outer conductor, which are identical for the IDA and CSA-I with the same h_A and h_B, the resultant SAR patterns are quite similar. It is also noted that since the longitudinal extent of the measured SAR pattern is confined within the length of both antennas, the current choking behavior of the $\lambda/4$ sleeve is confirmed.

In the previous example, the only constraint imposed on the design of IDA and CSA-I is that better than -10 dB of return loss is obtained at 915 MHz. As shown in Figs. 4 and 5, although this requirement is satisfied in both cases, the designed antennas resonate at frequencies other than 915 MHz. Since the lowest return loss usually occurs at or near the first resonance, antenna design can be optimized by computing S_{11} at the desired operating frequency for a set of (h_A, h_B) combinations and, from which, choose the one that results in purely real S_{11} which is also small enough to meet the preset impedance matching performance (say, -10 dB).

To illustrate this process with a simplified example, we first fix h_B to 40 mm, and frequency to 915 MHz, S_{11} are then calculated for all three types of antenna as functions of h_A. With h_A varies from 1 to 100 mm, the resultant $S_{11}(h_A)$ are plotted in Fig. 7. As can be seen, for the range of h_A chosen, both CSA-II and IDA have gone through three resonances,
while two resonances occurred to the CSA-I curve. These curves also indicate that the lowest $|S_{11}|$ usually occurs at or near the first resonance (especially for CSA-I and II). From this example, $(h_A, |S_{11}|)$ correspond to the first resonances are $(10 \text{ mm}, -24 \text{ dB}), (17 \text{ mm}, -33 \text{ dB})$ and $(24 \text{ mm}, -22 \text{ dB})$ for CSA-II, CSA-I, and IDA, respectively, which indicate that the first resonance lengths of IDA and CSA-I are longer than that of CSA-II by 28% and 14%, respectively. Since excellent $|S_{11}|$ are observed, it is not necessary to repeat $S_{11}(h_A)$ calculations for different h_B values.

This simple optimization process is exercised for the two CSA-II antennas that are designed for operation at 915 and 433 MHz, respectively. The resultant (h_A, h_B) are $(10, 40 \text{ mm})$ and $(16, 80 \text{ mm})$ for operation at 915 and 433 MHz, respectively. The corresponding calculated and measured $S_{11}(f)$ are shown in Figs. 8 and 9, in which good agreements between theoretical and measured data are observed, except for a slight shift in frequency response, which may be attributed to tolerances in material and structural parameters.

IV. CONCLUSIONS

New formulas for the predictions of the input impedance characteristics of insulated CSA’s are derived in this paper. For comparison, the impedance model developed earlier by King et al. [4] for IDA’s is also presented here. A simple strategy for the optimization of an applicator’s impedance-matching performance at the desired frequency of operation is also described. Accuracy of the impedance models are confirmed by the good agreements observed between theoretically calculated and experimentally measured $S_{11}(f)$ data; the slight shift in frequency response observed between calculated and measured data may be attributed to tolerances in material and structural parameters. Therefore, these impedance models can be relied upon when designing efficient interstitial hyperthermia applicators.

With the additional current path(s) present in the internal feed line, the two CSA’s, especially the CSA-II design, are found to possess shorter resonant lengths than IDA’s having comparable impedance-matching performance. This length-shortening feature may be advantageously applied when designing interstitial hyperthermia applicators for operation at lower ISM frequencies, for which the radiating length required of the traditional insulated dipole applicator may be too long to match the longitudinal extent of the tissue region to be heated. Heating performance of CSA’s operating at both 915 and 433 MHz will be described in a different paper.

REFERENCES

David W.-F. Su was born in Kauhsiung, Taiwan, R.O.C., on May 9, 1968. He received the B.S. and M.S. degrees in communication engineering, and the Ph.D. degree from the National Chiao Tung University, Hsinchu, Taiwan, R.O.C., in 1990 and 1992, respectively.

From 1992 to 1993, he was an R&D Engineer at the Taiwan Microwave Co., Ltd., where he participated in various RF and microwave-circuit-design projects. From 1993 to 1998, he was been with the Department of Communication Engineering at National Chiao Tung University, where he was engaged in microwave hyperthermia and radiometry, and traveling-wave tube and insulated antenna design. He is currently with Alpha Telecom Inc., Hsinchu, Taiwan, R.O.C., where his work mainly concerns the developments of wireless local loop and mobile communication system.

Lin-Kun Wu (S’81–M’81) was born in Hsinchu, Taiwan, R.O.C., in 1958. He received the M.S. and Ph.D. degrees in electrical and computer engineering from the University of Kansas, Lawrence, in 1982 and 1985, respectively.

From November 1985 to December 1987, he was a Post-Doctoral Research Associate at the Center for Research, Inc., University of Kansas, where he worked on microwave remote sensing and computational electromagnetics. In 1988, he joined the Department of Communication Engineering, National Chiao Tung University, Hsinchu, Taiwan, R.O.C., where he is currently a Professor. His current research interests include computational electromagnetics, biological effects and medical applications of electromagnetic energy, and electromagnetic compatibility.